Informatiker der TU Graz haben nun eine Erklärung dafür gefunden, wie das Gehirn trotz dieser scheinbar unzuverlässigen Verarbeitungsweise gezielt Informationen verarbeiten und Schlüsse ziehen kann.
Ihre Theorie mit entscheidender Relevanz für die Weiterentwicklung von Computern haben die Forscher in der aktuellen Ausgabe des renommierten Journals „PLoS Computational Biology“ veröffentlicht und präsentieren sie von 12. bis 16. November auf der „Neuroscience 2011“, der weltweit größten Konferenz in diesem Bereich, in Washington.
Das Muster der elektrischen Impulse der Neuronen im menschlichen Gehirn variiert so stark, dass es schwierig ist, Ähnlichkeiten darin zu entdecken. „Dieses Phänomen ist ein Hinweis darauf, dass Informationsverarbeitung im Gehirn fundamental anders organisiert ist als im Computer, zumindest als in den bisher gebauten Computern“, erklärt Wolfgang Maass, der das Institut für Grundlagen der Informationsverarbeitung der TU Graz leitet. Gemeinsam mit seinem Team hat er eine Theorie entwickelt, die zeigt, dass auch Neurone, die mehr oder weniger zufällig Impulse, so genannte "spikes", an andere Neurone aussenden, sehr gezielt Berechnungen durchführen können.
Modell für Rechner der Zukunft
„Der Grund ist, dass solche ‘unzuverlässigen‘ Neurone so zu einem Netzwerk verschaltet werden können, dass das Gehirn eine große Zahl an verschiedenen Möglichkeiten quasi spontan, also zufallsgesteuert, durchspielen kann, um eine geeignete Lösung eines Problems zu ermitteln“, erklärt Maass. Diese Theorie erklärt eine große Zahl von experimentellen Ergebnissen der Neurowissenschaft und Kognitionswissenschaft, so die Forscher. Daneben gibt sie den Informatikern aber auch neue Ideen, wie man zukünftige Rechner aus sehr billigen und extrem kleinen ‘unzuverlässigen‘ Rechenelementen bauen kann, die möglicherweise lediglich aus einigen wenigen Molekülen bestehen.
Prototyp in Arbeit
Die These der Grazer Forscher besagt, dass ein geeignetes Netzwerk neuartiger elektronischer Bausteine mit neuronenartigem Verhalten ebenfalls in der Lage sein kann, aus einer großen Anzahl von unsicheren Fakten und Vermutungen intelligente Schlüsse zu ziehen. Ein Prototyp eines solchen neurartigen Rechners entsteht derzeit in Zusammenarbeit der Informatiker aus Graz mit Physikern der Universität Heidelberg im Rahmen des EU-Projekts BrainScales. Schon bald wollen die Forscher nachprüfen können, ob die Vorhersagen der neuen Theorie auch für Rechner gelten, die aus in Silizium nachgebildeten künstlichen Neuronen bestehen.
Link zur Publikation:
Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at
Weitere Berichte zu: > BrainScaleS > Kognitionswissenschaft > Neuron > Rechner
Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen
Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.
Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
Anzeige
Anzeige
Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0
23.04.2018 | Veranstaltungen
Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?
23.04.2018 | Veranstaltungen
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
23.04.2018 | Physik Astronomie
Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe
23.04.2018 | HANNOVER MESSE
Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Materialwissenschaften