Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn schließt von Korrelation auf kausale Beziehung

16.12.2011
Wie Bilder und Geräusche zu einer Wahrnehmung integriert werden

Um mitzubekommen, was in der Umgebung passiert, muss das Gehirn die Informationen mehrerer Sinne zusammenführen. Doch woher weiß es, welche Signale integriert werden müssen? Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik, des Bernstein Zentrums Tübingen, der Universitäten Oxford und Bielefeld haben diese Prozesse genauer untersucht: Sie haben festgestellt, dass das menschliche Gehirn die Korrelation zwischen den zeitlichen Veränderungen der Signale nutzt, um herauszufiltern, welche Signale zusammengehören und welche unabhängig voneinander verarbeitet werden müssen.

Signale von mehreren Sinnen, die ihren Ursprung im gleichen Ereignis haben, ähneln sich häufig. So haben zum Beispiel ein Feuerwerk am Silvesterabend, ein fallender Gegenstand, der mehrmals auf dem Boden aufprallt, und die Schritte einer Person auf der Straße gemeinsam, dass sich die zeitliche Abfolge der dabei entstehenden Seh- und Höreindrücke größtenteils ähnelt, das heißt, sie stehen in Korrelation zueinander. In diesen Fällen nehmen Menschen unweigerlich an, dass die Seh- und Höreindrücke von ein und demselben Ereignis in der Welt herrühren. Bisher gingen Wissenschaftler davon aus, dass das Gehirn einfach die Gleichzeitigkeit der Sinneseindrücke registriert. Tatsächlich bildet jedoch die Ähnlichkeit der zeitlichen Strukturen der Sinnessignale für das Gehirn eine verlässliche Grundlage bei der Entscheidung, ob die Signale verschiedener Sinne eine gemeinsame Ursache haben.

Cesare Parise vom Max-Planck-Institut für biologische Kybernetik in Tübingen sowie des Bernstein Zentrums Tübingen und seine Kollegen haben die Rolle der Signalkorrelation bei der gemeinsamen Verarbeitung der Eindrücke verschiedener Sinne genauer untersucht, indem sie Studienteilnehmer bei Experimenten eine Abfolge von Tönen und Bildeinblendungen lokalisieren ließen. Die Studienteilnehmer saßen dabei vor einer großen Leinwand, von der aus akustische Reize als Abfolge von einzelnen Klickgeräuschen und Sehreize als Abfolge aufblitzender Flecken aus verschiedenen Richtungen im Raum eingespielt wurden. Bei einem Teil der Versuche wurden nur Seh- oder nur Hörreize präsentiert, bei anderen Versuchen wurden beide Reize in Kombination abgespielt. Bei den Kombinationsversuchen waren außerdem die Abfolgen der Seh- und Hörreize teilweise miteinander korreliert, teilweise nicht. Die Studienteilnehmer hatten jeweils die Aufgabe, die Reizquelle zu lokalisieren.

Wie bei früheren Studien waren die Angaben der Testpersonen präziser, wenn die Geräusch- und Bildabfolgen zusammen statt einzeln präsentiert wurden. Waren die Reize nicht miteinander korreliert, war die Präzision nur unwesentlich erhöht. Die Präzision war am höchsten, wenn die Geräusch- und Bildabfolgen miteinander korrelierten, dann erreichte die Leistung der Studienteilnehmer fast das theoretische Maximum.

Die Ergebnisse zeigen, dass Menschen die Signale mehrerer Sinne nur dann optimal miteinander kombinieren, wenn diese zeitlich korrelieren. Frühere Forschungen hatten ergeben, dass eine optimale Integration nur zustande kommt, wenn das Gehirn sicher ist, dass die Signale eine gemeinsame Ursache haben. Das Gehirn nutzt also die statistische Korrelation zwischen den Sinnessignalen, um auf eine gemeinsame physikalische Ursache zu schließen, es schätzt ab, ob die Sinne gleichartige Informationen liefern, die integriert werden sollten.

Den Forschern zufolge hat das Gehirn mit dieser Verarbeitungsweise eine effiziente Fähigkeit entwickelt, sich einen sicheren Weg durch die Vielzahl der Umgebungsreize des Alltagslebens zu bahnen, die unaufhörlich von allen Sinnen auf das Gehirn einströmen. „Dadurch können wir beispielsweise bei einer lauten Cocktailparty zuordnen, welche Person mit welcher Stimme spricht“, sagt Cesare Parise. „Unsere Augen und Ohren nehmen ständig Sinnesinformationen auf, und unser Gehirn gibt allem einen Sinn, indem es Bilder und Geräusche mit ähnlichen zeitlichen Strukturen zusammenführt.“

Obwohl es sich um einen allgemeinen Aspekt der Verarbeitung von Sinnesinformationen handelt, weiß man bisher wenig über die Details, wie die statistischen Eigenschaften der Signale helfen, verschiedene Sinnesreize mit komplexen dynamischen zeitlichen Mustern zu integrieren. Mit den neuen Forschungsergebnissen wird nun die Rolle eines sehr generellen Prinzips verdeutlicht, mit dem das Gehirn die Korrespondenz mehrerer Wahrnehmungssignale identifiziert. Was auf den ersten Blick als Trugschluss erscheint, nämlich aus der Korrelation einen ursächlichen Zusammenhang abzuleiten, erweist sich als Regel bei der Wahrnehmung.

Originalpublikation:
Cesare V. Parise, Charles Spence, Marc O. Ernst: When Correlation Implies Causation in Multisensory Integration. Current Biology doi: 10.1016/j.cub.2011.11.039
Ansprechpartner:
Cesare Parise
Max-Planck-Institut für biologische Kybernetik
Bernstein Zentrum Tübingen
Tel.: 0521 106-5703
E-Mail: cesare.parise(at)tuebingen.mpg.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften