Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn schließt von Korrelation auf kausale Beziehung

16.12.2011
Wie Bilder und Geräusche zu einer Wahrnehmung integriert werden

Um mitzubekommen, was in der Umgebung passiert, muss das Gehirn die Informationen mehrerer Sinne zusammenführen. Doch woher weiß es, welche Signale integriert werden müssen? Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik, des Bernstein Zentrums Tübingen, der Universitäten Oxford und Bielefeld haben diese Prozesse genauer untersucht: Sie haben festgestellt, dass das menschliche Gehirn die Korrelation zwischen den zeitlichen Veränderungen der Signale nutzt, um herauszufiltern, welche Signale zusammengehören und welche unabhängig voneinander verarbeitet werden müssen.

Signale von mehreren Sinnen, die ihren Ursprung im gleichen Ereignis haben, ähneln sich häufig. So haben zum Beispiel ein Feuerwerk am Silvesterabend, ein fallender Gegenstand, der mehrmals auf dem Boden aufprallt, und die Schritte einer Person auf der Straße gemeinsam, dass sich die zeitliche Abfolge der dabei entstehenden Seh- und Höreindrücke größtenteils ähnelt, das heißt, sie stehen in Korrelation zueinander. In diesen Fällen nehmen Menschen unweigerlich an, dass die Seh- und Höreindrücke von ein und demselben Ereignis in der Welt herrühren. Bisher gingen Wissenschaftler davon aus, dass das Gehirn einfach die Gleichzeitigkeit der Sinneseindrücke registriert. Tatsächlich bildet jedoch die Ähnlichkeit der zeitlichen Strukturen der Sinnessignale für das Gehirn eine verlässliche Grundlage bei der Entscheidung, ob die Signale verschiedener Sinne eine gemeinsame Ursache haben.

Cesare Parise vom Max-Planck-Institut für biologische Kybernetik in Tübingen sowie des Bernstein Zentrums Tübingen und seine Kollegen haben die Rolle der Signalkorrelation bei der gemeinsamen Verarbeitung der Eindrücke verschiedener Sinne genauer untersucht, indem sie Studienteilnehmer bei Experimenten eine Abfolge von Tönen und Bildeinblendungen lokalisieren ließen. Die Studienteilnehmer saßen dabei vor einer großen Leinwand, von der aus akustische Reize als Abfolge von einzelnen Klickgeräuschen und Sehreize als Abfolge aufblitzender Flecken aus verschiedenen Richtungen im Raum eingespielt wurden. Bei einem Teil der Versuche wurden nur Seh- oder nur Hörreize präsentiert, bei anderen Versuchen wurden beide Reize in Kombination abgespielt. Bei den Kombinationsversuchen waren außerdem die Abfolgen der Seh- und Hörreize teilweise miteinander korreliert, teilweise nicht. Die Studienteilnehmer hatten jeweils die Aufgabe, die Reizquelle zu lokalisieren.

Wie bei früheren Studien waren die Angaben der Testpersonen präziser, wenn die Geräusch- und Bildabfolgen zusammen statt einzeln präsentiert wurden. Waren die Reize nicht miteinander korreliert, war die Präzision nur unwesentlich erhöht. Die Präzision war am höchsten, wenn die Geräusch- und Bildabfolgen miteinander korrelierten, dann erreichte die Leistung der Studienteilnehmer fast das theoretische Maximum.

Die Ergebnisse zeigen, dass Menschen die Signale mehrerer Sinne nur dann optimal miteinander kombinieren, wenn diese zeitlich korrelieren. Frühere Forschungen hatten ergeben, dass eine optimale Integration nur zustande kommt, wenn das Gehirn sicher ist, dass die Signale eine gemeinsame Ursache haben. Das Gehirn nutzt also die statistische Korrelation zwischen den Sinnessignalen, um auf eine gemeinsame physikalische Ursache zu schließen, es schätzt ab, ob die Sinne gleichartige Informationen liefern, die integriert werden sollten.

Den Forschern zufolge hat das Gehirn mit dieser Verarbeitungsweise eine effiziente Fähigkeit entwickelt, sich einen sicheren Weg durch die Vielzahl der Umgebungsreize des Alltagslebens zu bahnen, die unaufhörlich von allen Sinnen auf das Gehirn einströmen. „Dadurch können wir beispielsweise bei einer lauten Cocktailparty zuordnen, welche Person mit welcher Stimme spricht“, sagt Cesare Parise. „Unsere Augen und Ohren nehmen ständig Sinnesinformationen auf, und unser Gehirn gibt allem einen Sinn, indem es Bilder und Geräusche mit ähnlichen zeitlichen Strukturen zusammenführt.“

Obwohl es sich um einen allgemeinen Aspekt der Verarbeitung von Sinnesinformationen handelt, weiß man bisher wenig über die Details, wie die statistischen Eigenschaften der Signale helfen, verschiedene Sinnesreize mit komplexen dynamischen zeitlichen Mustern zu integrieren. Mit den neuen Forschungsergebnissen wird nun die Rolle eines sehr generellen Prinzips verdeutlicht, mit dem das Gehirn die Korrespondenz mehrerer Wahrnehmungssignale identifiziert. Was auf den ersten Blick als Trugschluss erscheint, nämlich aus der Korrelation einen ursächlichen Zusammenhang abzuleiten, erweist sich als Regel bei der Wahrnehmung.

Originalpublikation:
Cesare V. Parise, Charles Spence, Marc O. Ernst: When Correlation Implies Causation in Multisensory Integration. Current Biology doi: 10.1016/j.cub.2011.11.039
Ansprechpartner:
Cesare Parise
Max-Planck-Institut für biologische Kybernetik
Bernstein Zentrum Tübingen
Tel.: 0521 106-5703
E-Mail: cesare.parise(at)tuebingen.mpg.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE