Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn im Gleichgewicht

07.09.2011
Auch bei Umorganisationen im Gehirn bleibt das Verhältnis von Hemmung und Erregung gleich

In jeder Sekunde tauschen die Nervenzellen des Gehirns viele Billiarden synaptischer Impulse untereinander aus. Zwei Arten von Synapsen sorgen für den geregelten Ablauf dieses Datenstroms: Erregende Synapsen geben Informationen zwischen Zellen weiter, während hemmende Synapsen den Informationsfluss begrenzen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten jetzt in Zusammenarbeit mit der Ruhr Universität Bochum zeigen, dass das Verhältnis zwischen Erregung und Hemmung gleich bleibt – selbst wenn sich das Gehirn umorganisiert. Nach einer kleinen Netzhautläsion erhielten die für diesen Bereich zuständigen Nervenzellen im Mäusegehirn keine (erregenden) Informationen mehr. Als Konsequenz bauten die Zellen über 30 Prozent ihrer hemmenden Synapsen innerhalb eines Tages ab. Das heruntergeregelte Gleichgewicht zwischen Erregung und Hemmung könnte für die Nervenzellen ein Signal sein, sich neu zu organisieren, um den Informationsverlust teilweise zu kompensieren.



Die Synapsen dieser Nervenzelle hemmen den Informationsfluss anderer Zellen. © MPI für Neurobiologie / Keck

Nervenzellen sind wahre Informationsjunkies. Um neue Informationen verarbeiten und speichern zu können oder um bestehende Verarbeitungswege zu optimieren, wachsen von der Oberfläche der Nervenzellen ständig winzige Fortsätze auf ihre Nachbarzellen zu. Am Ende dieser Fortsätze kann eine Synapse entstehen, über die zwei Nervenzellen dann Informationen austauschen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried und der Ruhr Universität Bochum konnten vor einiger Zeit zeigen, wie schnell sich Nervenzellen selbst im erwachsenen Gehirn umorganisieren, damit sie kontinuierlich Informationen verarbeiten können: Nach einer kleinen Netzhautläsion waren die für die Verarbeitung dieses Bereichs zuständigen Nervenzellen im Gehirn zunächst "arbeitslos". Im Laufe der nächsten Wochen beobachteten die Neurobiologen dann, dass diese Nervenzellen vermehrt neue Fortsätze zu ihren Nachbarzellen ausschickten und sich so neu mit ihnen vernetzten. Die zeitweise arbeitslosen Zellen wurden somit wieder mit Informationen versorgt und konnten neue Aufgaben im Verarbeitungsnetzwerk für Sehinformationen übernehmen.

Für eine optimale Verarbeitung im Gehirn ist jedoch nicht nur die Weitergabe von Informationen wichtig, sondern auch das gezielte Hemmen des Informationsflusses an bestimmten Stellen. Was mit diesen sogenannten hemmenden Synapsen passiert, wenn sich die Verhältnisse im Gehirn ändern, wurde bisher kaum erforscht. So machte es sich das Wissenschaftler-Team zur Aufgabe, das Schicksal dieser Synapsen bei Nervenzellen zu untersuchen, die aufgrund einer kleinen Netzhautläsion keine Informationen mehr bekommen.

"Ein mögliches Ergebnis war, dass diese Synapsen bestehen bleiben, um zum Beispiel die Zellen zu hemmen, die nun keine oder nur sinnlose Informationen weitergeben würden", erklärt Tara Keck zu ihrer Studie, die gerade im Fachmagazin Neuron erschienen ist. Die Neurobiologen fanden jedoch heraus, dass das Gegenteil der Fall ist. Sie zeigten, dass die nun arbeitslosen Zellen rund ein Drittel ihrer hemmenden Synapsen innerhalb eines Tages abbauten. Dieser Abbau geschah in solch einem Umfang, dass das durch den Wegfall der erregenden Signale aus der Netzhaut entstandene Ungleichgewicht im Informationsfluss aufgehoben wurde. "Das Spannende an diesem Ergebnis ist, dass das Gehirn anscheinend versucht, das Gleichgewicht zwischen Hemmung und Erregung stets aufrecht zu halten", so Keck.

Welche Bedeutung solch ein niedrigeres Niveau des bewährten Gleichgewichts haben kann, dazu haben die Wissenschaftler schon eine Theorie. "Es könnte sein, dass der Abbau der hemmenden Synapsen ein Signal für die Nachbarzellen ist, nach dem Motto: Hier sind arbeitslose Nervenzellen, bitte Kontakt aufnehmen", überlegt Mark Hübener, der Leiter der Studie. Ob dies der Fall ist, und ob nach der Neuvernetzung mit anderen Zellen auch wieder mehr hemmende Synapsen aufgebaut werden, sodass das Gleichgewicht bestehen bleibt, wollen die Wissenschaftler als nächstes untersuchen.

Ansprechpartner
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3514
E-Mail: merker@neuro.mpg.de
Originalveröffentlichung
Tara Keck, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener

Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex

Neuron, online publication, September 8 2011

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4410702/Gehirn_im_Gleichgewicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik