Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn im Gleichgewicht

07.09.2011
Auch bei Umorganisationen im Gehirn bleibt das Verhältnis von Hemmung und Erregung gleich

In jeder Sekunde tauschen die Nervenzellen des Gehirns viele Billiarden synaptischer Impulse untereinander aus. Zwei Arten von Synapsen sorgen für den geregelten Ablauf dieses Datenstroms: Erregende Synapsen geben Informationen zwischen Zellen weiter, während hemmende Synapsen den Informationsfluss begrenzen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten jetzt in Zusammenarbeit mit der Ruhr Universität Bochum zeigen, dass das Verhältnis zwischen Erregung und Hemmung gleich bleibt – selbst wenn sich das Gehirn umorganisiert. Nach einer kleinen Netzhautläsion erhielten die für diesen Bereich zuständigen Nervenzellen im Mäusegehirn keine (erregenden) Informationen mehr. Als Konsequenz bauten die Zellen über 30 Prozent ihrer hemmenden Synapsen innerhalb eines Tages ab. Das heruntergeregelte Gleichgewicht zwischen Erregung und Hemmung könnte für die Nervenzellen ein Signal sein, sich neu zu organisieren, um den Informationsverlust teilweise zu kompensieren.



Die Synapsen dieser Nervenzelle hemmen den Informationsfluss anderer Zellen. © MPI für Neurobiologie / Keck

Nervenzellen sind wahre Informationsjunkies. Um neue Informationen verarbeiten und speichern zu können oder um bestehende Verarbeitungswege zu optimieren, wachsen von der Oberfläche der Nervenzellen ständig winzige Fortsätze auf ihre Nachbarzellen zu. Am Ende dieser Fortsätze kann eine Synapse entstehen, über die zwei Nervenzellen dann Informationen austauschen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried und der Ruhr Universität Bochum konnten vor einiger Zeit zeigen, wie schnell sich Nervenzellen selbst im erwachsenen Gehirn umorganisieren, damit sie kontinuierlich Informationen verarbeiten können: Nach einer kleinen Netzhautläsion waren die für die Verarbeitung dieses Bereichs zuständigen Nervenzellen im Gehirn zunächst "arbeitslos". Im Laufe der nächsten Wochen beobachteten die Neurobiologen dann, dass diese Nervenzellen vermehrt neue Fortsätze zu ihren Nachbarzellen ausschickten und sich so neu mit ihnen vernetzten. Die zeitweise arbeitslosen Zellen wurden somit wieder mit Informationen versorgt und konnten neue Aufgaben im Verarbeitungsnetzwerk für Sehinformationen übernehmen.

Für eine optimale Verarbeitung im Gehirn ist jedoch nicht nur die Weitergabe von Informationen wichtig, sondern auch das gezielte Hemmen des Informationsflusses an bestimmten Stellen. Was mit diesen sogenannten hemmenden Synapsen passiert, wenn sich die Verhältnisse im Gehirn ändern, wurde bisher kaum erforscht. So machte es sich das Wissenschaftler-Team zur Aufgabe, das Schicksal dieser Synapsen bei Nervenzellen zu untersuchen, die aufgrund einer kleinen Netzhautläsion keine Informationen mehr bekommen.

"Ein mögliches Ergebnis war, dass diese Synapsen bestehen bleiben, um zum Beispiel die Zellen zu hemmen, die nun keine oder nur sinnlose Informationen weitergeben würden", erklärt Tara Keck zu ihrer Studie, die gerade im Fachmagazin Neuron erschienen ist. Die Neurobiologen fanden jedoch heraus, dass das Gegenteil der Fall ist. Sie zeigten, dass die nun arbeitslosen Zellen rund ein Drittel ihrer hemmenden Synapsen innerhalb eines Tages abbauten. Dieser Abbau geschah in solch einem Umfang, dass das durch den Wegfall der erregenden Signale aus der Netzhaut entstandene Ungleichgewicht im Informationsfluss aufgehoben wurde. "Das Spannende an diesem Ergebnis ist, dass das Gehirn anscheinend versucht, das Gleichgewicht zwischen Hemmung und Erregung stets aufrecht zu halten", so Keck.

Welche Bedeutung solch ein niedrigeres Niveau des bewährten Gleichgewichts haben kann, dazu haben die Wissenschaftler schon eine Theorie. "Es könnte sein, dass der Abbau der hemmenden Synapsen ein Signal für die Nachbarzellen ist, nach dem Motto: Hier sind arbeitslose Nervenzellen, bitte Kontakt aufnehmen", überlegt Mark Hübener, der Leiter der Studie. Ob dies der Fall ist, und ob nach der Neuvernetzung mit anderen Zellen auch wieder mehr hemmende Synapsen aufgebaut werden, sodass das Gleichgewicht bestehen bleibt, wollen die Wissenschaftler als nächstes untersuchen.

Ansprechpartner
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3514
E-Mail: merker@neuro.mpg.de
Originalveröffentlichung
Tara Keck, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener

Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex

Neuron, online publication, September 8 2011

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4410702/Gehirn_im_Gleichgewicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics