Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnis der Orientierung von Vögeln gelüftet

29.10.2009
Wissenschaftler weisen nach, dass Vögel das Magnetfeld der Erde sehen können

Millionen von Zugvögeln machen sich in jedem Jahr auf den Weg in wärmere oder kältere Gebiete der Erde. Ihr Navigationssystem funktioniert äußerst präzise. Die Orientierung am Magnetfeld der Erde spielt dabei die entscheidende Rolle.

Zu den großen Mysterien der Biologie gehörte bisher die Frage, welche sensorischen Mechanismen den Vögeln erlauben, das Magnetfeld wahrzunehmen. Manuela Zapka und neun weitere Mitglieder der Arbeitsgruppe "Neurosensorik - Animal Navigation" unter Leitung des Oldenburger Biologen und Lichtenberg-Professors Prof. Dr. Henrik Mouritsen hat dieses Geheimnis nun gelüftet.

Die Arbeitsgruppe, die von der VolkswagenStiftung und der DFG gefördert wird, konnte nachweisen, dass sich die Vögel nicht nur am Magnetfeld orientieren, sondern seine Ausrichtung regelrecht "sehen" können. Verantwortlich dafür ist eine als "Cluster N" bezeichnete Hirnregion, die ein Teilbereich des Sehzentrums ist. Der magnetische Kompass der Vögel befindet sich demnach im Bereich der Augen. Ihre richtungsweisenden Forschungsergebnisse stellt die Arbeitsgruppe gemeinsam mit Prof. Martin Wild (University of Auckland, New Zealand) in der heute erscheinenden Ausgabe des Wissenschaftsjournals NATURE (Volume 461, 29. Oktober 2009) vor.

Bereits 2004 vermuteten die Arbeitsgruppen von Mouritsen und seinem Kollegen Prof. Dr. Erich Jarvis von der Duke University (USA), dass sie mit dem "Cluster N" die Hirnregion identifiziert hatten, die für die Orientierung am Magnetfeld eine besondere Bedeutung haben könnte. Mit den jüngsten Untersuchungen konnten die WissenschaftlerInnen jetzt nachweisen, dass Deaktivierungen des Clusters dazu führen, dass die Vögel ihren magnetischen Kompass zur Orientierung nicht mehr nutzen können. Die Fähigkeit, sich an der Sonne oder den Sternen zu orientieren, bleibt allerdings unbeeinträchtigt. Das "Cluster N" ist also empirisch nachweisbar in die Verarbeitung magnetischer Feldinformationen involviert.

Die Studie untersuchte auch andere mögliche Formen der Magnetfeldwahrnehmung. So konnten die WissenschaftlerInnen zeigen, dass die als Magnetsensoren in Verdacht stehenden Eisenmineral-Kristalle in der oberen Schnabelhaut keine entscheidende Rolle für den Magnetkompass spielen. Obwohl die ForscherInnen den Trigeminus-Nerv, die einzige Nervenverbindung zwischen den Eisenmineralkristallen im Schnabel und dem Gehirn, inaktivierten, konnten die Vögel immer noch problemlos ihren magnetischen Kompass nutzen.

Die jetzt vorgelegten Ergebnisse sind ein wichtiger Meilenstein in der sensorischen Biologie, da die Mechanismen der Magnetfeldwahrnehmung bisher als unerklärbar galten. "Unsere Erkenntnisse können genutzt werden, um Zugvögel und andere seltene Tierarten besser schützen zu können", sagte Mouritsen. Oft bemühen sich Tierschützer darum, seltene Vögel in neue Brutgebiete umzusiedeln oder ihre Zugrouten zu ändern, um damit auf Gefahren und Veränderungen im natürlichen Habitat der Tiere zu reagieren. Dabei ergaben sich in der Praxis oft große Schwierigkeiten. Die meisten umgesiedelten Vögel flogen zu ihren angestammten Winter- und Brutquartieren zurück. Nur durch ein umfassendes Verständnis der Orientierungsmechanismen von Vögeln könne es künftig eine Chance geben, gefährdete Populationen erfolgreich umzusiedeln, betonte Mouritsen.

Auch für den Menschen, der Tag für Tag großen Mengen elektromagnetischer Strahlung ausgesetzt ist - z.B. durch Mobiltelefone, Radiowellen oder magnetbasierte Bildgebungsverfahren im klinischen Kontext - könnten die neuen Erkenntnisse wertvoll sein. Die Identifikation der neuronalen Bahnen bei Vögeln, die durch Magnetfelder beeinflusst werden, könne, so Mouritsen, ein entscheidender Schritt auf dem Weg zu einem präziseren Verständnis der Veränderungen sein, die Magnetfelder in Molekülen, Proteinen und Zellen in Organismen hervorrufen können.

Kontakt: Prof. Dr. Henrik Mouritsen, Institut für Biologie und Umweltwissenschaften, AG "Neurosensorik", Tel.: 0441/798-3081, E-Mail: henrik.mouritsen@uni-oldenburg.de, Manuela Zapka, Institut für Biologie und Umweltwissenschaften, AG "Neurosensorik", Tel.: 0441/798-3645, E-Mail: manuela.zapka@uni-oldenburg.de

Dr. Corinna Dahm-Brey | idw
Weitere Informationen:
http://www.neurosensorik.uni-oldenburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics