Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freier Blick auf sich selbst organisierende Proteine

18.05.2011
Auf einer künstlichen Membran konnten Biophysiker des Biotechnologischen Zentrums der Technischen Universität Dresden (BIOTEC) das erste Mal beobachten, wie sich einzelne Proteine der Min-Familie, die in Bakterien die Zellteilung regulieren, selbst und gegenseitig organisieren.

Der Arbeitsgruppe von Prof. Petra Schwille, die biologische Strukturbildung an künstliche Membranen untersucht, ist ein weiterer Schritt bei der Nachbildung von Strukturen in Zellen gelungen, die nun sehr detaillierte Beobachtungen von Proteinmustern ermöglichen. Die Ergebnisse wurden jetzt in der Fachzeitschrift "Nature Structural & Molecular Biology" veröffentlicht (DOI: 10.1038/nsmb.2037)

Jedes biologische System, so auch die Zellen, besteht zunächst aus einem Gemisch von Biomolekülen. Die Dresdner Wissenschaftler interessiert, nach welchen Gesetzen sich plötzlich und ohne Steuerung von außen die Moleküle in diesen homogenen Lösungen organisieren. In der Theorie ist das Phänomen, das sich durch Diffusion und Wechselwirkung Muster ausbilden, gut verstanden. Experimentell sind solche Prozesse allerdings schwer nachzubilden. Die Diffusion ist ein physikalischer Prozess, der zu einer gleichmäßigen Verteilung von Teilchen und somit der Durchmischung zweier oder mehrerer Stoffe führt.

„Um besser zu verstehen, welche Eigenschaften die Moleküle benötigen, um verschiedene Bewegungsmuster auszubilden, haben wir ein oszillierendes System von Proteinen als Prototyp verwendet“, sagt Dr. Martin Loose von der Dresdner Arbeitsgruppe. Für seine Doktorarbeit konnte er gemeinsam mit Kollegen zum ersten Mal die Oszillation von Proteinen künstlich nachbauen. Bei seinen Versuchen hat er verschiedene Proteine der Min-Familie verwendet, die natürlicherweise in E.coli-Bakterien (Darmbakterien) vorkommen und dort die Zellteilung regulieren.

Bakterien sind von einer Zellmembran und einer formgebenden Zuckerhülle umgeben. Normalerweise befinden sich die Min-Proteine im Inneren der Bakterien, aber im zellfreien Modell des Systems werden die Proteine frei auf die Membran aufgebracht. Als hauchfeiner Film aus Lipiden liegt für die Versuche die künstliche Zellmembran auf dem Deckgläschen - ähnlich einer aufgeplatzten Seifenblase. „Das Gemisch der Min-Proteine befindet sich in Lösung über der Membran, so dass wir mit dem Fluoreszenzmikroskop genau die sich ausbreitenden Wellen beobachten können, die bei den Interaktionen der Proteine erzeugt werden“, beschreibt Loose den stark energiegetriebenen Prozess des wechselseitigen Wirkens der Proteine aufeinander.

Die Dresdner Biophysiker konnten weltweit das erste Mal beobachten, wie einzelne Moleküle der sogenannten MinD-Proteine an die künstliche Membran binden und auf welche Weise sie von den MinE-Proteinen wieder abgelöst werden. „Wir kennen zwar in etwa die Eigenschaften der einzelnen Moleküle, konnten ihr individuelles Verhalten in einer großen Ansammlung aber bisher nicht sichtbar machen.“ Martin Loose ist sich sicher: „Unser mechanistischer Prototyp bringt uns weiter, biologische Selbstorganisation besser zu verstehen.“

Publikation:
Martin Loose1/2, Elisabeth Fischer-Friedrich3, Christoph Herold1, Karsten Kruse4, Petra Schwille1/2: Min protein patterns emerge from rapid rebinding and direct membrane interaction of MinE. Nature Structural & Molecular Biology. (2011) DOI: doi:10.1038/nsmb.2037
1 BIOTEC, Technische Universität Dresden, Dresden
2 Max Planck Institute for Molecular Cell Biology and Genetics, Dresden
3 Max Planck Institute for the Physics of Complex Systems, Dresden
4 Theoretische Physik, Universität des Saarlands, Saarbrücken
http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.2037.html
Information für Journalisten:
Birte Urban-Eicheler,
Pressesprecherin Biotechnologisches Zentrum der TU Dresden
Tel.: 0351 463-40347,
birte.urban-eicheler@crt-dresden.de
Prof. Petra Schwille,
Professorin für Biophysik am Biotechnologischen Zentrum der TU Dresden
Tel.: 0351 463-40329,
petra.schwille@biotec.tu-dresden.de
Dr. Martin Loose,
Derzeit Departmental Fellow am Systems Biology Department, Harvard Medical School, USA

Martin_Loose@hms.harvard.edu

Das Biotechnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt Molecular Bioengineering und Regenerative Medizin ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Birte Urban-Eicheler

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise