Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freier Blick auf sich selbst organisierende Proteine

18.05.2011
Auf einer künstlichen Membran konnten Biophysiker des Biotechnologischen Zentrums der Technischen Universität Dresden (BIOTEC) das erste Mal beobachten, wie sich einzelne Proteine der Min-Familie, die in Bakterien die Zellteilung regulieren, selbst und gegenseitig organisieren.

Der Arbeitsgruppe von Prof. Petra Schwille, die biologische Strukturbildung an künstliche Membranen untersucht, ist ein weiterer Schritt bei der Nachbildung von Strukturen in Zellen gelungen, die nun sehr detaillierte Beobachtungen von Proteinmustern ermöglichen. Die Ergebnisse wurden jetzt in der Fachzeitschrift "Nature Structural & Molecular Biology" veröffentlicht (DOI: 10.1038/nsmb.2037)

Jedes biologische System, so auch die Zellen, besteht zunächst aus einem Gemisch von Biomolekülen. Die Dresdner Wissenschaftler interessiert, nach welchen Gesetzen sich plötzlich und ohne Steuerung von außen die Moleküle in diesen homogenen Lösungen organisieren. In der Theorie ist das Phänomen, das sich durch Diffusion und Wechselwirkung Muster ausbilden, gut verstanden. Experimentell sind solche Prozesse allerdings schwer nachzubilden. Die Diffusion ist ein physikalischer Prozess, der zu einer gleichmäßigen Verteilung von Teilchen und somit der Durchmischung zweier oder mehrerer Stoffe führt.

„Um besser zu verstehen, welche Eigenschaften die Moleküle benötigen, um verschiedene Bewegungsmuster auszubilden, haben wir ein oszillierendes System von Proteinen als Prototyp verwendet“, sagt Dr. Martin Loose von der Dresdner Arbeitsgruppe. Für seine Doktorarbeit konnte er gemeinsam mit Kollegen zum ersten Mal die Oszillation von Proteinen künstlich nachbauen. Bei seinen Versuchen hat er verschiedene Proteine der Min-Familie verwendet, die natürlicherweise in E.coli-Bakterien (Darmbakterien) vorkommen und dort die Zellteilung regulieren.

Bakterien sind von einer Zellmembran und einer formgebenden Zuckerhülle umgeben. Normalerweise befinden sich die Min-Proteine im Inneren der Bakterien, aber im zellfreien Modell des Systems werden die Proteine frei auf die Membran aufgebracht. Als hauchfeiner Film aus Lipiden liegt für die Versuche die künstliche Zellmembran auf dem Deckgläschen - ähnlich einer aufgeplatzten Seifenblase. „Das Gemisch der Min-Proteine befindet sich in Lösung über der Membran, so dass wir mit dem Fluoreszenzmikroskop genau die sich ausbreitenden Wellen beobachten können, die bei den Interaktionen der Proteine erzeugt werden“, beschreibt Loose den stark energiegetriebenen Prozess des wechselseitigen Wirkens der Proteine aufeinander.

Die Dresdner Biophysiker konnten weltweit das erste Mal beobachten, wie einzelne Moleküle der sogenannten MinD-Proteine an die künstliche Membran binden und auf welche Weise sie von den MinE-Proteinen wieder abgelöst werden. „Wir kennen zwar in etwa die Eigenschaften der einzelnen Moleküle, konnten ihr individuelles Verhalten in einer großen Ansammlung aber bisher nicht sichtbar machen.“ Martin Loose ist sich sicher: „Unser mechanistischer Prototyp bringt uns weiter, biologische Selbstorganisation besser zu verstehen.“

Publikation:
Martin Loose1/2, Elisabeth Fischer-Friedrich3, Christoph Herold1, Karsten Kruse4, Petra Schwille1/2: Min protein patterns emerge from rapid rebinding and direct membrane interaction of MinE. Nature Structural & Molecular Biology. (2011) DOI: doi:10.1038/nsmb.2037
1 BIOTEC, Technische Universität Dresden, Dresden
2 Max Planck Institute for Molecular Cell Biology and Genetics, Dresden
3 Max Planck Institute for the Physics of Complex Systems, Dresden
4 Theoretische Physik, Universität des Saarlands, Saarbrücken
http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.2037.html
Information für Journalisten:
Birte Urban-Eicheler,
Pressesprecherin Biotechnologisches Zentrum der TU Dresden
Tel.: 0351 463-40347,
birte.urban-eicheler@crt-dresden.de
Prof. Petra Schwille,
Professorin für Biophysik am Biotechnologischen Zentrum der TU Dresden
Tel.: 0351 463-40329,
petra.schwille@biotec.tu-dresden.de
Dr. Martin Loose,
Derzeit Departmental Fellow am Systems Biology Department, Harvard Medical School, USA

Martin_Loose@hms.harvard.edu

Das Biotechnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt Molecular Bioengineering und Regenerative Medizin ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Birte Urban-Eicheler

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln
24.07.2017 | Universität Potsdam

nachricht Pfade ausleuchten im Fischgehirn
24.07.2017 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie