Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie Poren für den Molekültransport

31.07.2014

Metall-organische Gerüste (MOFs) können Gase aufnehmen wie ein Schwamm, der Flüssigkeit aufsaugt.

Daher eignen sich diese hochporösen Materialien zum Speichern von Wasserstoff oder Treibhausgasen. Die Beladung ist jedoch bei vielen MOFs durch Barrieren eingeschränkt. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) präsentieren nun in der Zeitschrift „Nature Communications“, dass die Barrieren durch Korrosion der MOFs an der Oberfläche entstehen. Dies lässt sich mit wasserfreien Synthesestrategien vermeiden.


Die Beladung hochporöser Gerüste (MOFs) aus metallischen Knoten (grün) und organischen Verbindungselementen (grau) mit Gastmolekülen wird oft durch Barrieren an der Oberfläche behindert.

(Abbildung: IFG/KIT)

MOFs sind kristalline Materialien aus metallischen Knotenpunkten und organischen Verbindungselementen. Sie haben eine enorm große Oberfläche und sind hochporös. Daher können sie wie ein Schwamm andere Moleküle aufnehmen.

Eine große Bedeutung besitzen MOFs, die inzwischen auch großtechnisch hergestellt werden, bei der Speicherung von Gasen: Wenn das Gas in den Festkörper eintritt, verflüssigt es sich teilweise und wird dadurch dichter, sodass sich erheblich mehr Moleküle im gleichen Volumen speichern lassen. MOFs eignen sich unter anderem für die Speicherung von Wasserstoff im Tank von wasserstoffbetriebenen Automobilen, aber auch für die Speicherung der Treibhausgase Kohlendioxid und Methan.

Weitere Anwendungen liegen in den Bereichen Stofftrennung, Katalyse und Sensorik. Für jede Anwendung lässt sich das passende MOF maßschneidern; meist liegen sie als Pulver vor. In den vergangenen zehn Jahren wurden bereits über 20 000 verschiedene Vertreter dieser Materialklasse genau charakterisiert.

„Bei fast allen Anwendungen spielt die Beladung dieser hochporösen Kristalle mit Molekülen eine zentrale Rolle“, erklärt Lars Heinke vom Institut für Funktionelle Grenzflächen (IFG) des KIT. „Die Effizienz des Molekültransports in die porösen Partikel hinein ist für die Funktion der MOFs von kritischer Bedeutung.“ In vielen MOF-Materialien ist die Beladung jedoch durch sogenannte Oberflächenbarrieren stark eingeschränkt. Die Oberfläche des Schwamms ist sozusagen verklebt, die Poren sind verstopft, und die Beladung ist deutlich verzögert. Dies schränkt die Einsatzmöglichkeiten deutlich ein.

Um die Ursache dieser bisher unverstandenen Probleme aufzuklären, haben die IFG-Forscher die Entstehung der Oberflächenbarrieren erforscht. Dazu führten sie grundlegende Experimente an dünnen, auf Festkörpersubstraten aufgebauten und strukturell perfekten MOF-Schichten durch. Diese SURMOFs (SURface mounted Metal-Organic Frameworks) zeichnen sich durch eine hohe Ordnung und eine ideale Struktur aus.

Dadurch gelang es den Forschern nachzuweisen, dass die Barrieren auf eine Korrosion der MOF-Schichten an der Oberfläche zurückzuführen sind. Die Wissenschaftler zeigten, wie die Korrosion der Oberflächenschichten voranschreitet. Sie stellten fest, dass Wasser dabei eine zentrale Rolle spielt.

„Viele Wissenschaftler glaubten, daß diese Oberflächenbarrieren intrinsisch, also unvermeidbar sind. Das ist widerlegt – man kann MOFs auch so herstellen, dass sie ohne ,Stau‘ beladen werden können,“ sagt der Leiter des IFG des KIT, Professor Christof Wöll. Die nun in der Zeitschrift „Nature Communications“ publizierte Arbeit widerlegt eine Reihe von zuvor aufgestellten Hypothesen.

Die Ergebnisse der Arbeit können den verschiedenen Anwendungen der MOFs zugutekommen. Aufgrund der Erkenntnisse der KIT-Forscher gilt es für die Zukunft, wasserfreie Synthesestrategien für MOFs zu entwickeln. Damit lassen sich dann verbesserte Materialien realisieren, die einen barrierefreien Transport von Molekülen aus der Gas- und der flüssigen Phase in MOFs gewährleisten. So lässt sich die Effizienz dieser vielversprechenden Speicher- und Funktionsmaterialien noch weiter steigern.

L. Heinke, Z. Gu and Ch. Wöll, The surface barrier phenomenon at the loading of metal-organic frameworks. Nat. Commun. 5:4462 doi: 10.1038/ncomms5562 (2014).

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9400 Mitarbeiterinnen und Mitarbeitern, darunter mehr als 6000 in Wissenschaft und Lehre, sowie 24 500 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:
Kosta Schinarakis
Presse, Kommunikation und Marketing, Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43658
E-Mail:schinarakis@kit.edu

Monika Landgraf | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie