Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer IWM Ausgründung Smartmembranes produziert weltweit einzigartige Filtermembranen

21.07.2014

Luft, Wasser, Blut – bei allen Flüssigkeiten und Gasen gibt es Gründe sie zu filtern. Wenn es dabei auf kleinste Parameter ankommt, beispielsweise Nanopartikel oder Viren herausgefiltert werden sollen, und der Filter gleichzeitig hochgradig symmetrisch und strukturiert sein muss, gibt es weltweit nur einen Anbieter: Smartmembranes, das Start-up von zwei Chemikerinnen in Halle an der Saale.

Die meisten großen Innovationen brauchen Zeit damit ihre Tragweite erkannt wird. Das Produkt von Monika Lelonek und Dr. Petra Göring könnte so eine Innovation sein, denn die Markteinführung ihrer weltweit einzigartigen Filtermembranen hat ihnen einen langen Atem abverlangt.


Die Gründerinnen von Smartmembranes, Monika Lelonek und Dr. Petra Göring, vor einer stark vergrößerten Abbildung ihrer Filtermembranen aus Aluminiumoxid

(© Fraunhofer-Institut für Werkstoffmechanik IWM)

Das Problem: Kaum jemandem war bekannt, dass per Ätz- und Elektrolyseverfahren hergestellte Poren in Aluminiumoxid oder Silizium so feine Filtermembranen ergeben. Exakt fünf Jahre nach der Gründung bieten die beiden Forscherinnen heute mit ihrer fünfköpfigen Firma Smartmembranes damit maßgeschneiderte Lösungen für verschiedenste Anwendungen an.

»Es waren fünf schwierige Jahre, aber wir können mit Stolz behaupten, dass wir uns etabliert haben«, sagt Petra Göring, Mutter von drei Kindern. Das Potential von Ätzverfahren an keramischem Aluminium zur Herstellung von Filtern hatten die beiden Chemikerinnen unabhängig voneinander schon in ihren Promotionen erkannt, Lelonek an der Uni Münster und Göring am Max-Planck-Institut für Mikrostrukturphysik in Halle.

Auf einem Workshop für Unternehmerinnen in der Nanotechnologie, der Nano-Entrepreneurship-Academy NenA, lernten sie sich vor sieben Jahren dann kennen und machten ihre Idee zu einer gemeinsamen. Prompt gewannen sie damit auch den Gründerpreis dieser Bundesinitiative.

Professor Ralf Wehrspohn, Leiter des Fraunhofer-Instituts für Werkstoffmechanik IWM und zeitweiliger Arbeitgeber und Mentor von Petra Göring, war ebenfalls von den vielfältigen Anwendungsmöglichkeiten der einzigartigen Membranen angetan und schlug die beiden für das Fraunhofer-interne Gründerprogramm »FFE – Fraunhofer fördert Existenzen« vor.

»Das Verfahren zur Herstellung ist zwar seit den 90ern bekannt, aber niemand sonst hat so viel Zeit und Energie reingesteckt, diesen fragilen Prozess im Produktionsmaßstab beherrschbar zu machen«, sagt Wehrspohn. »Engagement und Forscherdrang der beiden Damen, verlangen einem gehörigen Respekt ab, gerade in den männlich geprägten Nanotechnologien«.

Die Vorteile der Membranen von Smartmembranes sind die hohe Ordnung und Einheitlichkeit der Poren. Die Schwankungen beim Durchmesser liegen bei maximal 10%. Nur in Halle können sie Form und Größe der Poren der Keramikmembranen so exakt und symmetrisch einstellen. Zwischen 20 und 400 Nanometer sind im Aluminiumoxid möglich. Zum Vergleich: Ein Aids-Virus hat einen Durchmesser von maximal120 Nanometer, fünfhundertmal kleiner als der Durchmesser eines menschlichen Haares. Lelonek und Göring können als einzige Porendurchmesser in einer Membran über die Dicke verändern, so dass beispielsweise kegelartige Poren entstehen.

Der Kern ihres Alleinstellungsmerkmals ist laut Göring die Prozessteuerung des Eloxalverfahrens, das nur unter eng vordefinierten Parametern die Poren in der gewünschten Größe und Verteilung ausbilde. »Unser Kapital ist das Know-How in unseren Köpfen«, sagt Lelonek. Ein Patent haben die beiden Chemikerinnen bewusst nicht angemeldet, um dieses Wissen in keiner Weise offenlegen zu müssen.

Die etablierten Alternativen auf dem Markt sind entweder gepresste Pulver, also willkürliche Schwammstrukturen, die gesintert wurden oder Folien, in die mit einem Ionenstrahl Löcher geschossen wurden. »Die Anbieter können zur Porengröße nur Mittelwerte angeben und die Membranen haben oft sogenannte Dead-End-Poren, also Sackgassen, die verstopfen und dadurch die Membran verunreinigen«, beschreibt Lelonek deren Defizite. Spezielle Anwendungen, wie beispielsweise die Filtration nach bestimmten Viren, wo kein anderes Partikel, wie zum Beispiel ein Bakterium, hängen bleiben darf, seien damit nicht möglich.

Auch der Investmentberater Johann Siemes von Fraunhofer Venture, der die Ausgründung von Lelonek und Göring seit sieben Jahren begleitet, ist von der Geschichte der beiden Forscherinnen angetan. »Die beiden bringen in einem für Gründer untypischem Umfeld und Lebensabschnitt wahnsinnige Energie und Nerven auf, ohne dafür signifikant entlohnt zu werden, etwa durch ein gutes Gehalt«. Auch die Rahmenbedingungen sieht Siemes als ungünstig: »Die Finanzierung ist mehrfach geplatzt, unter anderem weil Kapitalgeber hierzulande immer noch nicht besonders risikofreudig sind, selbst bei so bodenständigen Projekten wie dem aus Halle«.

Offenbar hat sich die harte Arbeit ausgezahlt, und der Nutzen für die Kunden spricht sich herum, denn die kommen mittlerweile aus vielen Bereichen, darunter Gassensorik, Drug-Delievery, Zellkultivierung oder Durchflusssensorik. Einer der noch wenigen Großkunden kommt aus Kanada und setzt die Membranen als Biochip ein, um unbekannte DNA mit einem Fluorenzenz-Scanner zu identifizieren.

Der Erfolg ist messbar: Mit den Membranen aus Halle erreicht der Kunde eine 20-mal schnellere Hybridisierungszeit, also der Dauer des Andockens der gesuchten DNA an die vorher aufgebrachten Fängermoleküle. Andere Kunden nutzen die Membranstrukturen auch als Schablone, um in den Poren Nanostrukturen wachsen zu lassen oder als Elektrodenmaterial in Brennstoffzellen, wo die hohe Oberfläche und die hohen Durchflussraten bei kleinen Drücken von Vorteil sind.

Für die Zukunft ist die Mission für Lelonek und Göring eindeutig: »Unsere nächsten drei Schritte sind Vetrieb, Vetrieb und Vetrieb«, sagt Lelonek und meint damit, dass sie demnächst wahrscheinlich mehr Zeit auf Fachtagungen und Messen verbringen werden als im Büro, um ihre Idee weiter bekannt zu machen und in die Welt hinauszutragen. Dass diese auf ihr Produkt gewartet hat, ist für die beiden klar.

Das Fraunhofer-Institut für Werkstoffmechanik IWM

Als Forschungspartner der Industrie und öffentlicher Auftraggeber entwickelt das Fraunhofer IWM Lösungen, mit denen der Energieverbrauch und der Materialeinsatz bei der Herstellung sowie im Einsatz von Werkstoffen und Bauteilen reduziert werden kann. Mit den Lösungen des Fraunhofer IWM können zudem die Energieverluste bei der Erzeugung, Umwandlung und Speicherung von Energie gesenkt werden. Sie führen zu längerer Bauteillebensdauer, höheren Standzeiten als auch zu gesteigerter Zuverlässigkeit und Sicherheit von Werkstoffen und Bauteilen.

www.iwm.fraunhofer.de

Clemens Homann | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Das Motorprotein tanzt in unseren Zellen
26.09.2017 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy