Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher klären Defekt im Gehör von Mäusen – Grundlage für Erforschung seltener Hörschäden

10.01.2014
Wissenschaftler der Saar-Uni sowie der Universitäten Tübingen und Ulm haben mit weiteren Forschergruppen eine seltene Schädigung des Hörsystems an Labormäusen beobachten können, die sich deutlich von klassischen Hörschäden unterscheidet.

Die Übertragung der Erregung des Hörnervs läuft langsamer und schwächer ab als bei den gesunden Mäusen. Damit haben die Forscher einen Grundstein für weitere Arbeiten gelegt, die klären können, ob eine ähnliche Schädigung auch beim Menschen auftritt.

Die Wissenschaftler haben ihre Ergebnisse in der Fachzeitschrift „The Journal of Neuroscience“ veröffentlicht. Koordiniert wurden die Forschergruppen von Jutta Engel, Professorin für Biophysik an der Saar-Uni.

Zu hören ist für die meisten Menschen eine Selbstverständlichkeit. Wie wichtig diese Sinneswahrnehmung ist, fällt meist erst dann auf, wenn das Gehör im Alter nachlässt oder nach einem Unfall geschädigt wird. Sich mit anderen Menschen zu unterhalten, ist dann oft äußerst schwierig, vor allem in einer lauten Umgebung. Mit dem Hörschaden einher gehen auch oft Probleme, sich im Alltag zu orientieren.

Die Geschädigten nehmen Geräusche in ihrer Umgebung, beispielsweise im Straßenverkehr, nicht mehr richtig wahr und sind dadurch gefährdet. Die Erstautorinnen Antonella Pirone (Tübingen) und Simone Kurt (Ulm) sowie weitere Forscherinnen und Forscher haben in ihrer nun veröffentlichten Studie eine spezielle Maus untersucht, deren Hörsystem Reize an Synapsen langsamer und schwächer überträgt als dies normalerweise der Fall ist. Ihre Ergebnisse könnten Anknüpfungspunkte bieten, um bestimmte Hörschädigungen des Menschen besser zu verstehen.

Ein gesundes Gehör funktioniert so: Schallwellen werden im Ohr in ein elektrisches Signal umgewandelt, das der Hörnerv an das Gehirn weiterleitet. Am Nervenende führt das elektrische Signal zu einer Aufnahme von Kalzium, welches dann mittels Botenstoffen dafür sorgt, dass das Signal auf die nachgeschaltete Nervenzelle weitergegeben wird. Erst nach mehreren solcher Übertragungen wird das Schallereignis bewusst wahrgenommen. Das Kalzium strömt durch Kalziumkanäle in die Nervenenden (auch Präsynapsen genannt). Bei den untersuchten Mäusen fehlt ein bestimmter Teil dieser Kalziumkanäle, eine Untereinheit namens α2δ3. Die Rolle dieser Untereinheit für die Kalziumkanäle ist bisher nur unzureichend geklärt. Dieser sind die Wissenschaftler nun weiter auf die Spur gekommen.

Die α2δ3-defizienten Mäuse haben nur geringfügig erhöhte Hörschwellen. Sie würden daher eigentlich als normalhörend eingestuft werden. Die gemessenen Nervensignale jedoch, die beim Hören entstehen, wichen deutlich von den Normalwerten ab. Das ist ein Hinweis auf eine so genannte auditive Verarbeitungs- und Wahrnehmungsstörung. Die Hörnervenzellen der modifizierten Mäuse haben insgesamt weniger Kalziumkanäle, und die Hörnervenfasern endeten in kleinen und wenig differenzierten Präsynapsen. Gegenüber den gesunden Mäusen wurden die Signale an dieser wichtigen Umschaltstelle mit einer größeren zeitlichen Verzögerung weitergeleitet, und ihre Signalstärke war abgeschwächt.

Doch welche Auswirkung haben diese Defekte auf die Wahrnehmung und Unterscheidung von Schallereignissen? Um dies zu klären, trainierte Simone Kurt die Mäuse, zwei verschiedene Tonhöhen durch ihr Verhalten zu unterscheiden. Diese Aufgabe konnten die genetisch veränderten Mäuse gut bewältigen, auch wenn sie etwas mehr Zeit zum Lernen benötigten als die normalen Mäuse. In einem weiteren Versuchsansatz erhöhte die Wissenschaftlerin die Anforderungen. Die Tiere sollten nun amplitudenmodulierte Töne unterscheiden – Töne, die periodisch lauter und leiser werden. Solche zeitlich strukturierten Signale spielen bei vielen natürlichen Lauten, vor allem bei der Kommunikation bei Menschen und Mäusen, eine entscheidende Rolle. Sie sind auch wichtig für die Ortung und Unterscheidung von Schallquellen. Während die Kontrollmäuse innerhalb weniger Tage lernten, 20 Hz-modulierte von 40-Hz-modulierten Tönen gleicher Trägerfrequenz zu unterscheiden, scheiterten die α2δ3-defizienten Mäuse an dieser Aufgabe.

Dieses Ergebnis ist Ausgangspunkt für weitere Forschungen, die dabei helfen können, menschliche Hörstörungen zu verstehen. Beim Menschen sind Schwerhörigkeit bzw. Taubheit die häufigsten angeborenen sensorischen Störungen, deren Ursache überwiegend im Mittelohr oder im Innenohr liegt. Störungen jenseits des Innenohrs, wie sie nun bei der Maus beobachtet wurden, sind hingegen selten. In Analogie zu den untersuchten Mäusen würde das Krankheitsbild beim Menschen bedeuten, dass Sprache zwar als Schallereignis wahrgenommen wird, aber das Gehörte nicht verstanden werden kann. Die vorliegende Arbeit liefert Erklärungsmöglichkeiten für solche Krankheitsbilder.

Den Artikel „α2δ3 Is Essential for Normal Structure and Function of Auditory Nerve Synapses and Is a Novel Candidate for Auditory Processing Disorders“ finden Sie hier www.jneurosci.org/content/34/2/434.short (DOI: 10.1523/JNEUROSCI.3085-13.2014). Insgesamt arbeiteten acht Forschergruppen an den Standorten Tübingen, Ulm, Leipzig, Kaiserslautern, Hamburg und Homburg an der Studie mit.

Weitere Informationen:
Prof. Dr. Jutta Engel
Tel.: (06841) 1626202
E-Mail: jutta.engel@mx.uni-saarland.de

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de
http://www.jneurosci.org/content/34/2/434.short

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik