Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Formel für ein biologisch wirksames Parfüm

23.01.2013
Der individuelle Körpergeruch spielt eine wichtige Rolle bei der Partnerwahl.

Über den Körpergeruch erhalten Menschen, Mäuse, Fische, Vögel und wahrscheinlich auch alle anderen Wirbeltiere Informationen über die Immunausstattung eines potenziellen Partners.


Forscher gehen davon aus, dass die Wahrnehmung nicht nur von Körpergerüchen, sondern auch von Parfüms bei der sexuellen Kommunikation eine Rolle spielt. Immerhin werden Parfüms schon seit über 5000 Jahren eingesetzt. © pixelio.de

Dieser wird danach ausgewählt, ob er die optimale Ergänzung zu den eigenen Immungenen anbietet. Ziel ist es, den Nachkommen möglichst unterschiedliche Immungene mitzugeben, so dass diese sind dann resistent gegen ein breites Spektrum von Krankheitserregern sind.

Obwohl bei Menschen insgesamt viele hundert verschiedene Formen der Immungene vorkommen, besitzt jeder Mensch nur einige wenige Varianten, die aber den typischen Körpergeruch, das individuelle “Parfüm” mitbestimmen. Wissenschaftler der Max-Planck-Institute für Immunbiologie und Epigenetik in Freiburg und für Evolutionsbiologie in Plön haben nun zusammen mit Kollegen der Universität Dresden die chemische Natur dieses individuellen Parfüms beim Menschen aufgeklärt, es synthetisiert und bei Probandinnen auf ihre Wirksamkeit überprüft. Die Resultate zeigen, wie Parfüms mit voller biologischer Wirksamkeit ohne Rückgriff auf tierische Produkte synthetisch hergestellt werden können.

Schon in den 1990iger Jahren hatte die Gruppe von Manfred Milinski, jetzt Direktor am Max-Planck-Institut für Evolutionsbiologie in Plön, mit sogenannten T-Shirt Experimenten herausgefunden, dass Frauen den Geruch von Männern bevorzugen, die andere Varianten von Immungenen besitzen als sie selbst. „Wir erfassen unbewusst, wie die eigene Immunabwehr beschaffen ist, und können die eines potenziellen Partners am Geruch erkennen“, erklärt Milinski.

In weiteren Experimenten konnte der Forscher dann zeigen, dass diese Immungen-Varianten auch bestimmen, welche natürlichen Parfümingredienzien Frauen wie Männer für ihr eigenes Parfüm bevorzugen. In der Auswahl des eigenen Parfüms sind Menschen von alters her sehr wählerisch, brauchen lange, bis sie es gefunden haben, und bleiben dann viele Jahre dabei. Das Parfüm wird so ausgewählt, das es das eigene immungenetische Geruchssignal verstärkt. „Wenn sie das natürliche Signal maskieren oder verändern würden, hätte die Selektion uns schon längst den Parfümgebrauch vermiest“, erklärt der Evolutionsbiologe.

Offenbar enthalten natürliche Parfümingredienzien chemische Nachahmer des menschlichen immungenabhängigen Geruchssignals. Das erklärt, warum sie oft sonderbaren Ursprungs sind. So wird z.B. Ambra aus den hervorgewürgten Resten der Beute des Pottwals hergestellt. Da natürliche Ingredienzien wegen ihrer allergenen Wirkung immer mehr durch biologisch unwirksame Ersatzstoffe ersetzt werden müssen, wäre es hilfreich, unser natürliches Parfüm zu analysieren, so dass man es synthetisieren und als “Original” in Parfüms verwenden kann. Welches Molekül könnte die Funktion des menschlichen natürlichen Parfüms übernehmen?

In Versuchen mit Mäusen war es der Arbeitsgruppe von Thomas Boehm, Direktor am Max-Planck Institut für Immunbiologie und Epigenetik in Freiburg, in Zusammenarbeit mit anderen Wissenschaftlern gelungen, biologisch wirksame Bestandteile des immungen-abhängigen Körpergeruchs zu identifizieren (http://www.mpg.de/493416/) – und zusammen mit seinem Kollegen Manfred Milinski diesen Mechanismus auch bei Fischen nachzuweisen (http://www.mpg.de/502897/).

Die Sinneszellen der Riechschleimhaut sind tatsächlich in der Lage, bestimmte Eiweißbruchstücke, Peptide genannt, zu erkennen. Sie liefern dem Immunsystem normalerweise Hinweise auf das Eindringen von Krankheitserregern – sind aber zugleich ein Spiegelbild der individuellen Ausstattung mit Immungenen. Das hängt mit dem Erkennungsmechanismus im Immunsystem zusammen: Die von Bakterien, Viren oder Parasiten stammenden Eiweißbruchstücke werden von sogenannten MHC-Molekülen gebunden. Jene Moleküle, die durch die verschiedenen Immungen-Varianten kodiert werden. „Der Erkennungsmechanismus funktioniert nach dem Schlüssel-Schloss-Prinzip, d.h. zu jedem MHC-Molekül gibt es passende Eiweißbruchstücke. Da es also bestimmter MHC-Moleküle bedarf, um bestimmte Peptide zu erkennen, spiegelt das Spektrum von Peptiden, das nach "außen" gelangt, auch das Spektrum von MHC-Molekülen wider“, erklärt Thomas Boehm. Damit hatten die Forscher den Geruchscode geknackt. Die Struktur der Eiweißbruchstücke lässt sich für die Immunmoleküle des Menschen also voraussagen.

Die Forscher konnten nun in ihrem aktuellen Experiment die Bestandteile des Körpergeruchs künstlich herstellen und auf Wirksamkeit überprüfen, nachdem sie die Art der Immungen-Varianten bei Probandinnen bestimmt hatten. Dazu wurden diese gebeten, die künstlichen Eiweißbruchstücke mit ihrem Achselschweiß zu vermischen und zu entscheiden, welche der verschiedenen Varianten ihnen am meisten zusagte. Es zeigte sich, dass die Probandinnen den Achselschweiß dann als besonders angenehm und ihrem bevorzugten Parfümduft entsprechend bezeichneten, wenn er mit einem ihrem eigenen Immungen-Typ entsprechenden Eiweißbruchstück vermischt worden war.

In Zusammenarbeit mit Forschern der Hals-Nasen-Ohrenklinik der Universität Dresden überprüften sie, ob und in welchem Bereich sich die Geruchsempfindungen im Gehirn nachweisen ließen. Die Arbeitsgruppe um Ilona Croy und Thomas Hummel applizierte dazu synthetische Eiweißbruchstücke eigener oder fremder Art und bestimmten die Wirkung in einem Magnetresonanztomografen. Erstaunlicherweise sprach immer dann ein kleines, im mittleren Bereich der rechten vorderen Hirnrinde gelegenes Areal an, wenn die Probandin ein Eigenpeptid roch.

„Diese Ergebnisse zeigen, dass die von den Immunmolekülen transportierten Eiweißbruchstücke nicht nur bei Tieren, sondern tatsächlich auch beim Menschen den natürlichen Körpergeruch mitbestimmen“, sagt Manfred Milinski. Die Erkenntnisse eröffnen die Möglichkeit, neuartige Parfüms herzustellen, die über die Verstärkung des Körpergeruchs potenziellen Partnern das Repertoire der eigenen Immungene besser signalisieren. „Damit könnte künftig möglicherweise in klassischen Parfüms auf Ingredienzien tierischen Ursprungs verzichtet werden“, so der Max-Planck-Direktor.

Ansprechpartner
Prof. Dr. Manfred Milinski,
Max-Planck-Institut für Evolutionsbiologie, Plön
Telefon: +49 4522 763-254
Fax: +49 4522 763-310
E-Mail: milinski@­evolbio.mpg.de
Prof. Dr. Thomas Boehm,
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-328
Fax: +49 761 5108-220
E-Mail: boehm@­immunbio.mpg.de

Originalpublikation
Manfred Milinski, Ilona Croy, Thomas Hummel und Thomas Boehm
Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment

Proceedings of the Royal Society B

Prof. Dr. Manfred Milinski | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6860494/Biologisches_Parfuem

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics