Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flimmerhärchen im Gehirn - mit dem Strom ans Ziel

08.07.2016

Wenn wir uns den Kopf anstoßen, geht das meist harmlos aus. Dies verdanken wir den mit Flüssigkeit gefüllten Hirnkammern in unserem Gehirn. Das Hirnwasser hat aber weit mehr als eine Schutzfunktion: Es entfernt Müll, versorgt unser Nervengewebe mit Nährstoffen und transportiert Botenstoffe. Doch wie diese Botenstoffe an ihr Ziel befördert werden, ist noch ungeklärt. Forscher haben nun herausgefunden, dass Flimmerhärchen den Weg weisen könnten: Ihre Schlagbewegungen erzeugen Ströme, die wie Förderbänder fungieren und darüber molekulare „Fracht“ transportieren. Die Ergebnisse der Wissenschaftler lassen vermuten, dass diese Ströme Botenstoffe gezielt an ihre Wirkorte im Gehirn weiterleiten.

Oberfläche spezialisierter Zellen im Inneren unseres Körpers machen diesen buchstäblich zu einer haarigen Angelegenheit. Flimmerhärchen befreien unsere Atemwege von Staub, Schleim und Krankheitserregern; transportieren Eizellen durch den Eileiter, und Spermien bewegen sich mit ihrer Hilfe vorwärts.


Strömungskarte im dritten Ventrikel des Maushirns. Linien symbolisieren Ströme entlang der Ventrikelwand. Pfeile veranschaulichen die Hauptstromrichtungen in einzelnen Bereichen.

Regina Faubel, Hartmut Sebesse / Max-Planck-Institut für biophysikalische Chemie

Auch die vier Hirnkammern in unserem Gehirn – die sogenannten Ventrikel – werden von einer Schicht hoch spezialisierter Zellen ausgekleidet, die auf ihrer Oberfläche mit Bündeln von Flimmerhärchen besetzt sind. Zwar ist jedes einzelne von ihnen nur wenige tausendstel Millimeter groß. Doch wenn Hunderte von ihnen im Gleichklang peitschenartig schlagen, können diese Härchen kräftige Ströme erzeugen.

Gregor Eichele und Regina Faubel vom Max-Planck-Institut für biophysikalische Chemie ist es gemeinsam mit Eberhard Bodenschatz und Christian Westendorf vom Max-Planck-Institut für Dynamik und Selbstorganisation jetzt gelungen, das komplexe Netzwerk dieser Ströme in isoliertem Hirnkammergewebe sichtbar zu machen. Für ihre Untersuchungen konzentrierten sich die Göttinger Forscher auf die dritte Hirnkammer, die in den Hypothalamus eingebettet ist.

„Der Hypothalamus ist eine sehr wichtige Schaltzentrale. Er steuert beispielsweise Kreislauf und Körpertemperatur, aber auch Sexualverhalten, Nahrungsaufnahme und Hormonhaushalt. Es gibt daher einen umfangreichen Transport von Botenstoffen über das Hirnwasser vom und zum Hypothalamus“, erklärt Gregor Eichele, Leiter der Abteilung Gene und Verhalten am Max-Planck-Institut für biophysikalische Chemie.

Leuchtende Kügelchen unter dem Mikroskop

Die Flüssigkeitsbewegung lässt sich allerdings unter einem Mikroskop nicht direkt beobachten. Um diese sichtbar zu machen, entwickelte Regina Faubel, wissenschaftliche Mitarbeiterin in Eicheles Abteilung, einen neuen experimentellen Ansatz mit isoliertem Hirnkammergewebe aus der Maus. In der Kulturschale injizierte sie dem Nervengewebe winzige fluoreszierende Kügelchen, die daraufhin als Leuchtmarker mit dem Nährmedium mitschwammen.

Nachfolgend erfasste die Wissenschaftlerin den Weg eines jeden Kügelchens innerhalb des Nervengewebes unter dem Mikroskop. Mithilfe eines von ihrem Kollegen Christian Westendorf eigens dafür entwickelten Computerprogramms setzten die Forscher die umfangreichen Daten dann zu einem wissenschaftlich auswertbaren Bild zusammen.

„Wir sehen auf diesen Bildern ein komplexes Netz von ‚Flüssigkeitsstraßen’ entlang der Innenseite der Hirnkammer. Doch anders als das Blut, das durch unsere Blutgefäße fließt, sind diese Straßen nicht durch Wandungen begrenzt. Die spannende Frage für uns war daher: Wird das Strömungsmuster allein durch das synchronisierte Schlagen der Flimmerhärchen erzeugt?“, berichtet Regina Faubel, Erstautorin der Studie. Im nächsten Schritt filmten die Wissenschaftler die Flimmerhärchen daher live in Aktion und bestimmten die Schlagrichtung der Flimmerhärchen sowie die daraus resultierende Strömung.

„Unsere Experimente haben gezeigt, dass die Ströme tatsächlich allein durch die Bewegungen der Härchen erzeugt werden. Diese funktionieren wie Förderbänder und wären damit durchaus in der Lage, Botenstoffe an den richtigen Ort im Gehirn zu transportieren“, so Eberhard Bodenschatz, Leiter der Abteilung Hydrodynamik, Strukturbildung und Biokomplexität am Max-Planck-Institut für Dynamik und Selbstorganisation. „Auch könnten die Ströme dazu beitragen, Substanzen lokal zu begrenzen, indem die gegeneinander verlaufenden Flüssigkeitsstraßen wie Barrieren wirken“, ergänzt Christian Westendorf, Zweitautor der Studie.

Wechselnde Strömungsrichtungen

Doch anders als das Straßennetz, in dem wir uns tagtäglich mit dem Auto oder Fahrrad bewegen, sind diese Flüssigkeitsstraßen keinesfalls starr. Zur Überraschung der Forscher wechselten die Härchen in einem zeitlichen Rhythmus ihre Schlagrichtung. Nach vorherrschender Lehrmeinung gilt die Schlagrichtung der Flimmerhärchen jedoch als unveränderbar.

„Im Hirnwasser bei uns Menschen gibt es Hunderte, wenn nicht sogar Tausende physiologisch wirksamer Substanzen“, wie Eichele betont. „Das von uns entdeckte Netzwerk von Strömen spielt vermutlich eine wichtige Rolle, um diese Stoffe zu verteilen. In weiteren Versuchen möchten wir aufklären, welche Botenstoffe über die Ströme transportiert und wo diese schließlich im Gewebe deponiert werden.“ „Auch ist das Verständnis von der Physik der Strömungsdynamik der Flimmerhärchen selbst ein Forschungsziel“, sagt Bodenschatz.

Original-Veröffentlichung:
Regina Faubel, Christian Westendorf, Eberhard Bodenschatz, Gregor Eichele: Cilia-based flow networks in the brain ventricles. Science 353, 176-1788 (8. Juli 2016), DOI: 10.1126/science.aae0450

Kontakt:
Prof. Dr. Gregor Eichele, Abteilung Gene und Verhalten
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2701
E-Mail: gregor.eichele@mpibpc.mpg.de

Prof. Dr. Eberhard Bodenschatz, Abteilung Hydrodynamik, Strukturbildung und Biokomplexität
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: +49 551 5176-300
E-Mail: eberhard.bodenschatz@ds.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15410396/pr_1623 – Original-Pressemitteilung vom Max-Planck-Institut für biophysikalische Chemie
http://www.mpibpc.mpg.de/de/eichele – Webseite der Abteilung Gene und Verhalten,
http://Max-Planck-Institut für biophysikalische Chemie
http://www.lfpn.ds.mpg.de – Webseite der Abteilung Hydrodynamik, Strukturbildung und Biokomplexität, Max-Planck-Institut für Dynamik und Selbstorganisation

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte