Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Fliegen fliegen

17.11.2011
Max-Planck-Forscher entdecken Genschalter für die Bildung von Flugmuskeln

Wie viele andere Insekten sind auch Fliegen wahre Flugkünstler – obwohl sie im Verhältnis zu ihrer Körpergröße relativ kleine Flügel besitzen. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München haben kürzlich den entscheidenden genetischen Schalter identifiziert, der die Bildung von Flugmuskeln steuert.


Fliegen sind exzellente Flieger. Aber ohne das Gen spalt bleiben sie auf der Erde und laufen.
© MPI für Biochemie / Frank Schnorrer

„Das Gen spalt ist essentiell, damit die ultraschnellen Supermuskeln überhaupt entstehen können“, betont Frank Schnorrer, Leiter der Forschungsgruppe „Muskeldynamik“. „Wenn es fehlt, dann bilden sich anstelle von Flugmuskeln lediglich normale Beinmuskeln aus.“ Die Ergebnisse der Wissenschaftler wurden jetzt in Nature veröffentlicht.

Um mit ihren kleinen Flügeln effizient fliegen zu können, müssen Fliegen sehr schnell damit schlagen. Das verursacht das bekannte und allgegenwärtige Summen und Brummen der kleinen Flieger. Die Taufliege Drosophila melanogaster, im Volksmund auch Fruchtfliege genannt, bewegt ihre Flügel mit einer Frequenz von 200 Hertz – ihre Flugmuskeln kontrahieren und entspannen also 200-mal pro Sekunde. „Demgegenüber wirkt ein Hundertmetersprinter, der seine Beine nur wenige Male pro Sekunde bewegt, wie eine richtige Schnecke“, beschreibt Frank Schnorrer. Wie aber erreicht die Taufliege diese hohe Schlagfrequenz?

Muskeln steuern sämtliche Bewegungen, auch die der Flügel. Doch Flugmuskeln sind einzigartig. Ihre Kontraktionen werden nicht nur wie sonst durch Nervenimpulse gesteuert, sondern zusätzlich durch Spannung. Das ist möglich, weil jede Fliege zwei Kategorien von Flugmuskeln besitzt: Die einen bewegen die Flügel nach unten und dehnen dabei die anderen, die dann kontrahieren. So werden die Flügel wieder nach oben gezogen und ein stabiler Kreislauf beginnt.

Mithilfe gezielter Veränderungen von Genen der Taufliege haben Wissenschaftler der Forschungsgruppe Muskeldynamik am Max-Planck-Institut für Biochemie jetzt den entscheidenden Schalter für die Bildung von Flugmuskeln identifiziert: Spalt. Transkriptionsfaktoren wie Spalt spielen eine wichtige Rolle bei der richtigen Übersetzung des genetischen Materials in die Proteine, die von der jeweiligen Zelle benötigt werden. Spalt existiert nur in den Flugmuskeln und ist für den besonderen Aufbau ihrer Myofibrillen verantwortlich. Diese Bestandteile der Muskelfasern ermöglichen erst die Kontraktion des Muskels als Antwort auf die angelegte Spannung beim Flügelschlag. Wenn Spalt fehlt, sind die Fliegen zwar lebensfähig, können aber nicht fliegen. Die Flugmuskeln reagieren nicht mehr auf Spannung und verhalten sich wie normale Beinmuskeln. Umgekehrt gelang es den Wissenschaftlern allein durch das Einfügen von Spalt in Fliegenbeine, dort flugmuskelähnliche Muskeln zu erzeugen.

Die Ergebnisse könnten für die Humanmedizin ebenfalls relevant sein. „Die Körpermuskeln des Menschen besitzen zwar kein Spalt und werden auch kaum durch Spannung reguliert“, erklärt Frank Schnorrer. „Aber der menschliche Herzmuskel bildet Spalt und die Spannung in der Herzkammer beeinflusst die Stärke des Herzschlags. Ob Spalt eine Rolle bei der Regulation des Herzschlags spielt, ist bisher allerdings nicht bekannt und muss erst noch erforscht werden.“

Ansprechpartner
Dr. Frank Schnorrer
Forschungsgruppe Muskeldynamik
Max-Planck-Institut für Biochemie, Martinsried
E-Mail: schnorrer@biochem.mpg.de
Anja Konschak
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-2943
E-Mail: konschak@biochem.mpg.de
Publikationsreferenz
Cornelia Schönbauer, Jutta Distler, Nina Jährling, Martin Radolf, Hans-Ulrich Dodt, Manfred Frasch & Frank Schnorrer (2011)
Spalt mediates an evolutionarily conserved switch to fibrillar
muscle fate in insects
Nature, 17. November 2011

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4648523/Wie_Fliegen_fliegen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics