Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faszinierende Einblicke in den "Maschinenraum" der Proteinfabrik

05.11.2013
Wer treibt bei komplexen Arbeitsabläufen eigentlich wen an? Diese Frage stellt sich auch in den Proteinfabriken der Zelle – den Ribosomen.

Computersimulationen eines Forscherteams aus Göttingen, Jülich und Düsseldorf haben erstmals mit atomarer Genauigkeit gezeigt, welche Mechanismen und Kräfte im Ribosom am Werk sind. Ihre Experimente machten das "Hebel- und Räderwerk" sichtbar, das die Bewegungen des Ribosoms kontrolliert und koordiniert. (Nature Structural & Molecular Biology, 3. November 2013, DOI: 10.1038/nsmb.2690)


Transfer-RNA (tRNA)-Moleküle am Ende ihrer Wanderung durch das Ribosom (oranges Bändermodell). Die grüne tRNA befindet sich bereits am Ausgang des Ribosoms, die blaue tRNA sitzt in der mittleren Position, an der es seine Aminosäure abgibt. Quelle: Forschungszentrum Jülich

Ribosomen sind molekulare Hochleistungsmaschinen. Sie fertigen nach den in der DNA codierten Bauplänen Proteine – die universellen Werkzeuge aller Zellen. Proteine empfangen und übermitteln Signale, transportieren zelluläre Fracht oder sorgen für Wachstum und Bewegung. Für die Proteinproduktion muss zunächst eine Arbeitskopie der DNA erzeugt werden – die sogenannte Boten-RNA. Wie ein Fließband wird die Boten-RNA durch das Ribosom hindurchgeschleust. Dabei wird es in Schritten von jeweils drei Nukleinsäurebasen abgetastet. Die Tripletts werden wiederum von den passenden Aminosäure-Transportern, sogenannten Transfer-RNAs oder kurz tRNAs, abgelesen, die eine bestimmte Aminosäure binden. Die Aminosäuren werden nacheinander zu einer Kette zusammengesetzt und ergeben schließlich ein neues Proteinmolekül.

Wissenschaftlern vom Göttinger Max-Planck-Institut für biophysikalische Chemie war es vor Kurzem gelungen, hoch aufgelöste Momentaufnahmen dieses Prozesses mit einem Elektronenmikroskop aufzunehmen. Ihre 50 Strukturen des Ribosoms in verschiedenen Zuständen der Proteinsynthese zeigen, welchen Weg die tRNAs während der Proteinproduktion durch das Ribosom nehmen und wo sie andocken. Ein Forscherteam aus Göttingen, Jülich und Düsseldorf hat mit Computersimulationen die einzelnen Schnappschüsse jetzt in eine zeitliche Reihenfolge gebracht und untersucht, wie sich die tRNA-Moleküle auf ihrem Weg durch das Ribosom bewegen und welche molekularen Kräfte dabei wirken.

Gunnar Schröder, Leiter einer Nachwuchsgruppe am Forschungszentrum Jülich und Juniorprofessor an der Heinrich-Heine-Universität Düsseldorf, erklärt: "Damit haben wir es erstmals geschafft, aus einzelnen Elektronenmikroskopie-Aufnahmen mithilfe von Computersimulationen einen vollständigen Bewegungsablauf im Ribosom zusammenzusetzen." Schröder hat aus den früheren elektronenmikroskopischen Aufnahmen die atomaren Modelle erstellt, auf denen die aktuellen Computersimulationen basieren. Helmut Grubmüller, Direktor am Max-Planck-Institut für biophysikalische Chemie in Göttingen, betont: "Nun sehen wir nicht nur, welche Prozesse im Inneren der Proteinfabrik ablaufen, sondern auch, durch welche Kräfte diese Prozesse angetrieben werden." Das Ergebnis dieser Arbeit ist eine "Filmsequenz" – direkt aus dem "Maschinenraum" der Proteinfabrik.

Die neuen detaillierten Einblicke des Forscherteams in den "Maschinenraum" der Ribosomen sind auch für die Medizin von Bedeutung. Bestimmte Antibiotika bekämpfen Krankheitserreger deshalb so wirksam, weil sich Ribosomen von Bakterien und höheren Organismen in wichtigen Details unterscheiden. Solche Antibiotika hemmen nur die bakterielle Proteinfabrik; die Ribosomen höherer Zellen dagegen bleiben verschont. Um zukünftig neue Antibiotika entwickeln zu können, ist ein genaues Verständnis der Struktur und Funktion des Ribosoms eine unerlässliche Grundlage.

Filmsequenz: Der "Maschinenraum" der Proteinfabrik
siehe unter:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2013/13-11-05-Proteinfabrik.html
Transfer-RNA (tRNA)-Moleküle (grün und blau) auf ihrem Weg durch das Ribosom (orange). In der Arbeit wurden insgesamt 25 solcher Strukturen mit atomarer Genauigkeit bestimmt und anschließend mithilfe von Molekulardynamiksimulationen zu einem kompletten Bewegungsablauf zusammengesetzt. Quelle: Forschungszentrum Jülich

Kein Flash-Plugin vorhanden
Originalpublikation:
Lars V Bock, Christian Blau, Gunnar F Schröder, Iakov I Davydov, Niels Fischer, Holger Stark, Marina V Rodnina, Andrea C Vaiana & Helmut Grubmüller
Energy barriers and driving forces in tRNA translocation through the ribosome
Nature Structural & Molecular Biology (published online 3 Mevmeber 2013), DOI: 10.1038/nsmb.2690

Abstract: http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.2690.html

Weitere Informationen:

Pressemitteilung der Universität Düsseldorf
http://www.uni-duesseldorf.de/home/startseite/news-detailansicht/article/faszinierende-einblicke-in-den-maschinenraum-der-proteinfabrik.html
Institute of Complex Systems, Strukturbiochemie (ICS-6)
http://www.fz-juelich.de/ics/ics-6/DE/Home/home_node.html
Nachwuchsgruppe Computational Structural Biology Group
http://www.schroderlab.org/
Ansprechpartner:
Jun.-Prof. Dr. Gunnar Schröder
Institute of Complex Systems (ICS-6)
Tel. 02461-61-3259
gu.schroeder@fz-juelich.de
Pressekontakt:
Tobias Schlößer
Forschungszentrum Jülich
Tel. 02461 61-4771
t.schloesser@fz-juelich.de
Dr. Carmen Rotte
Max-Planck-Institut für biophysikalische Chemie
Tel. 0551 201-1304
carmen.rotte@mpibpc.mpg.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2013/13-11-05-Proteinfabrik.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie