Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolutionsbiologie - Schwämme kommen mit wenig Sauerstoff aus

06.02.2018

Schwämmen, mit die einfachsten Tiere, fehlt ein molekularer Signalweg, mit dem andere Tiere intern Sauerstoff regulieren. Haben sie andere Mechanismen dafür entwickelt oder lebten ihre frühesten Vorfahren in einer sehr sauerstoffarmen Welt?

Gert Wörheides Forschungsfragen führen ihn mehr als 650 Millionen Jahre zurück zu den Anfängen des tierischen Lebens auf der Erde. Jüngst konnte der Geobiologe zeigen, dass Schwämme, und nicht Rippenquallen sehr wahrscheinlich die Schwestergruppe aller anderen Tiere sind. Sie spalteten sich nah der Wurzel vom Stammbaum der Tiere ab, aus der anderen Linie entwickelten sich alle anderen Tiere.


Tethya wilhelma, Bild: Sergio Vargas, LMU

In ihrer neueste Studie zeigt sein Team nun, in Zusammenarbeit mit der Arbeitsgruppe von Professor Canfield von der University of Southern Denmark, dass Schwämme im Gegensatz zu fast allen anderen Tieren mit sehr wenig Sauerstoff zurechtkommen.

Wie die molekulargenetische Analysen von Wörheide, Inhaber des Lehrstuhls für Paläontologie und Geobiologie an der LMU, nun zeigen, fehlt ihnen zudem ein bestimmter Signalweg, mit dem Tiere in ihren Geweben und Zellen Sauerstoff regulieren können. Darüber berichtet das Team nun aktuell im Fachjournal eLife.

Die überwiegende Mehrheit aller heute lebenden Tiere braucht Sauerstoff zum Leben. Für den Fall, dass dieser nicht ausreichend vorhanden ist, verfügen sie über einen molekularen Signalweg, den sogenannten HIF Signalweg, der es ihnen erlaubt, Sauerstoff in den Zellen zu regulieren, um somit ein bestimmtes Level an Sauerstoff im Körper aufrechtzuerhalten. Bislang war unklar, ob auch alle tierischen Vorfahren über diese Fähigkeit verfügten.

In Experimenten in Aquarien am Lehrstuhl von Gert Wörheide fand das Team nun heraus, dass der Meeresschwamm Tethya wilhelma mit nur 0,25 Prozent des heutigen Sauerstoffgehalts in den Meeren zurechtkommt. „Das hat uns sehr überrascht“, sagt Wörheide, und es führte zu der Frage, wie Schwämme mit Sauerstoffknappheit umgehen.

Anschließende genetische Analysen zeigten, dass Schwämmen, wie auch den ebenfalls analysierten Rippenquallen, wichtige Komponenten des HIF Signalweg fehlen, mit dem Tiere normalerweise den Sauerstoffgehalt in ihrer Umgebung wahrnehmen und Schwankungen ausgleichen.

Wörheide beabsichtigt nun in weiteren Studien zu klären, ob Schwämme einen anderen Mechanismus dafür entwickelt haben oder einfach nur generell mit sehr wenig Sauerstoff auskommen. Diese Frage hat auch große Bedeutung für das Verständnis der Evolutionsgeschichte auf unserem Planeten.

„Niemand weiß genau, wie es im Präkambrium auf der Erde aussah. Weder Schwämme noch Rippenquallen – beide die Schwestergruppen der anderen Tiere – besitzen allerdings die Fähigkeit, den Gehalt von Sauerstoff in der Umgebung so wie andere Tiere durch den HIF Signalweg wahrzunehmen und darauf zu reagieren.

Und da Schwämme, wie wir experimentell zeigen konnten, anscheinend mit sehr wenig Sauerstoff auskommen, könnte man durchaus rückschließen, dass die frühesten gemeinsamen Vorfahren der Tiere womöglich in einer sehr sauerstoffarmen Umwelt atmeten“, sagt Wörheide.

Publikation
Daniel B. Mills, Warren R. Francis, Sergio Vargas, Morten Larsen, Coen P.H. Elemans, Donald E. Canfield, Gert Wörheide:
„The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments“
In: eLife 2018
https://doi.org/10.7554/eLife.31176

Kontakt
Professor Gert Wörheide
Lehrstuhl für Paläontologie & Geobiologie
Tel.: +49 (0) 89/2180-6718
E-Mail: geobiologie@geo.lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics