Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Essenskanäle für Bakterien

23.02.2015

Bakterien verbinden sich untereinander und tauschen Nährstoffe aus. Dass Bakterien sich bei Nährstoffmangel gegenseitig aushelfen ist schon länger bekannt.

Wie dieser Nährstoffaustausch praktisch aussehen kann, haben jetzt Wissenschaftler am Max-Planck-Institut für chemische Ökologie in Jena sowie der Universitäten Jena, Kaiserslautern und Heidelberg, herausgefunden. Sie entdeckten, dass manche Bakterien Nanokanäle zwischen einzelnen Zellen ausbilden, die den direkten Austausch von Nährstoffen ermöglichen. (Nature Communications, 23. Februar 2015)


Elektronenmikroskopische Aufnahme gentechnisch veränderter Bakterienstämme der Arten Escherichia coli und Acinetobacter baylyi, die Aminosäuren über Nanokanäle austauschen.

Martin Westermann / Elektronenmikroskopisches Zentrum am Universitätsklinikum der Friedrich-Schiller-Universität Jena

Bakterien leben zumeist in artenreichen Gemeinschaften, in denen häufig Nährstoffe und andere Stoffwechselprodukte ausgetauscht werden. Es war bislang unklar, ob Mikroorganismen diese Substanzen ausschließlich über die Umwelt austauschen oder ob sie dafür direkte Verbindungen zwischen den Zellen benutzen.

Wissenschaftler der Forschungsgruppe Experimentelle Ökologie und Evolution am Max-Planck-Institut für chemische Ökologie in Jena haben bakterielle Gene ausgeschaltet, sodass die Bakterien manche Aminosäuren nicht mehr produzieren konnten, andere wiederum in erhöhtem Maße herstellten. Für ihre Experimente nutzten die Wissenschaftler das Bodenbakterium Acinetobacter baylyi, sowie den Darmkeim Escherichia coli.

Wuchsen die so veränderten Bakterien zusammen, konnten sie sich gegenseitig ernähren, um so den experimentell erzeugten Aminosäuremangel wieder auszugleichen (siehe auch unsere Pressemeldung vom 2. Dezember 2013 „Arbeitsteilung im Reagenzglas - Bakterien wachsen schneller, wenn sie sich gegenseitig Nährstoffe zur Verfügung stellen“ - http://www.ice.mpg.de/ext/1051.html?&L=1). Wurden die Bakterien allerdings durch einen Filter getrennt, der Aminosäuren im Nährmedium zwar durchließ, einen direkten Austausch zwischen den beiden Bakterienstämmen jedoch verhinderte, konnte keiner der Stämme wachsen.

„Dies zeigte uns, dass offenbar ein direkter Kontakt zwischen den Zellen notwendig ist, um die Nährstoffe auszutauschen“, erläutert Samay Pande, der im Rahmen seiner Doktorarbeit am Max-Planck-Institut in Jena an diesem Projekt forschte und inzwischen wissenschaftlicher Mitarbeiter der ETH Zürich ist.

Im Elektronenmikroskop konnten die Wissenschaftler beobachten, dass sich zwischen beiden Bakterienarten Nanoröhren bildeten, die den Austausch von Nährstoffen ermöglichten. Auffallend war dabei, dass nur das Darmbakterium Escherichia coli solche Strukturen nutzte, um sich mit Acinetobacter baylyi-Zellen zu verbinden.

„Ein wesentlicher Unterschied zwischen diesen beiden Arten ist sicherlich, dass E. coli sich aktiv in Flüssigkeiten fortbewegen kann, während A. baylyi dazu nicht imstande ist. Es könnte deswegen sein, dass E. coli schwimmend seine Partner findet und so identifiziert, mit welcher Zelle es sich über Nanokanäle verbinden möchte,“ meint Christian Kost, Leiter der von der Volkwagen-Stiftung geförderten Forschungsgruppe Experimentelle Ökologie und Evolution.

„Ein Mangel an Aminosäuren löst die Bildung der Nanokanäle aus. Schalten wir ein Gen aus, welches für die Bildung einer bestimmten Aminosäure notwendig ist, verbinden sich die so genetisch veränderten Bakterien mit anderen Zellen, um ihren Nährstoffmangel zu kompensieren. Geben wir aber die benötigte Aminosäure zum Wachstumsmedium dazu, werden keine Nanokanäle produziert. Die Ausbildung dieser Strukturen hängt also davon ab, wie „hungrig“ eine Zelle ist“, fasst der Wissenschaftler die Ergebnisse zusammen.

In Bakteriengemeinschaften ist es für einzelne Arten von großem Vorteil, sich auf bestimmte biochemische Prozesse zu spezialisieren und andere Arbeiten sozusagen auszulagern: Das spart Ressourcen und steigert Effizienz und Wachstum. Ob Nanokanäle nur dem hierzu notwendigen wechselseitigen Austausch von Nährstoffen dienen, oder ob einzelne Bakterienarten andere Bakterien auch parasitisch anzapfen und aussaugen, müssen weitere Untersuchungen klären. Auch ist bislang noch unklar, ob Bakterien gezielt steuern können, an welche Zelle sie sich anheften. Immerhin ist eine solche Röhrenverbindung auch potenziell riskant, denn der Partner auf der anderen Seite könnte der Nanokanal-bildenden Zelle auch schaden.

„Die spannendste Frage bleibt für mich, ob es sich bei Bakterien tatsächlich um einzellige, relativ einfach strukturierte Organismen handelt, oder ob wir es mit einer anderen Form der Vielzelligkeit zu tun haben. Bakterien könnten beispielsweise ihre Komplexität dadurch steigern, dass sie sich mit anderen Bakterien verbinden und so ihre Fähigkeiten kombinieren“, sagt Christian Kost. Seine Arbeitsgruppe widmet sich der zentralen Frage, warum Lebewesen miteinander kooperieren. Bakterielle Lebensgemeinschaften als experimentelle Modellsysteme sollen dabei helfen zu verstehen, warum sich bei den meisten Lebewesen im Laufe der Evolution ein kooperativer Lebensstil durchgesetzt hat. [AO/CK/HR]

Originalveröffentlichung:
Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I. B., Kost, C. (2015. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nature Communications, DOI 10.1038/ncomms7238.
http://dx.doi.org/10.1038/ncomms7238

Weitere Informationen:
Dr. Christian Kost, Forschungsgruppe Experimentelle Ökologie und Evolution, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 (0)3641 57 1212, E-Mail ckost@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/633.html (Forschungsgruppe Experimentelle Ökologie und Evolution)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics