Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Zufallslaser aus papierbasierten Keramiken

10.11.2016

Den ersten steuerbaren Zufallslaser auf der Basis von Zellstoffpapier hat ein Team um Professor Cordt Zollfrank von der Technischen Universität München (TUM) zusammen mit Physikern der Universität Rom hergestellt. Das Team belegt, wie aus natürlich vorkommenden Strukturen eine technische Anwendung entstehen kann. Somit müssen künftig keine Materialien mehr künstlich mit ungeordneten Strukturen versehen werden, sondern es kann auf natürlich vorkommende zurückgegriffen werden.

Die von der Biologie inspirierte Materialsynthese ist ein Forschungsbereich am Lehrstuhl für Biogene Polymere der TUM am Wissenschaftszentrum Straubing: Dabei werden Modelle aus der Natur übertragen und biogene Materialien zur Entwicklung neuer Werkstoffe oder Technologien verwendet.


Für ihren Zufallslaser verwendeten die Wissenschaftler gewöhnliches Labor-Filterpapier wegen seiner langen Fasern und stabilen Struktur.

Foto: Institute for Complex Systems /Rom

In der aktuellen Ausgabe der Publikation ‚Advanced Optical Materials’ wird eine Grundlagenstudie vorgestellt, bei der es einem Team aus Straubing und Rom gelungen ist, „eine biologische Struktur als Vorlage für einen technischen Zufallslaser zu verwenden", sagt Wissenschaftler Dr. Daniel Van Opdenbosch.

Bei einem Laser sind zwei Komponenten notwendig: Einmal ein Medium, welches Licht verstärkt. Zum anderen eine Struktur, welche das Licht im Medium hält. Während ein klassischer Laser über Spiegel geordnet zielgerichtet in eine Richtung leuchtet und zwar einheitlich, passiert dies bei der winzigen Struktur eines Zufallslasers zwar auch einheitlich, jedoch in die verschiedensten Richtungen.

Die Entwicklung der Zufallslaser steckt zwar noch in den Anfängen, aber sie könnten einmal für kostengünstigere Produktionen sorgen, zudem haben Zufallslaser den Vorteil, dass sie richtungsunabhängig und mehrfarbig funktionieren, um nur einige Vorteile zu nennen.

Unordnung der Struktur sorgt für Ablenkung des Lichts in alle Richtungen

„Die Voraussetzung für einen Zufallslaser ist ein definiertes Maß an struktureller Unordnung im Inneren“, erklärt Van Opdenbosch. Das Licht im Zufallslaser wird folglich entlang zufälliger Pfade kreuz und quer gestreut, die bedingt sind durch eine unregelmäßige Strukturierung im Inneren des Mediums. Das Team um Professor Zollfrank vom Lehrstuhl für Biogene Polymere in Straubing setzte als Strukturvorlage gewöhnliches Labor-Filterpapier ein. „Wegen seiner langen Fasern und der daraus resultierenden stabilen Struktur erschien es uns als geeignet“, sagt Van Opdenbosch.

Im Labor wurde das Papier mit Tetraethylorthotitanat, einer metallorganischen Verbindung, imprägniert. Diese bildet beim Trocknen und anschließenden Ausbrennen des Zellstoffs bei 500 Grad Celsius als Rückstand die Keramik Titandioxid – ein Material, das üblicherweise in Sonnencremes für den Lichtschutz sorgt.

„Der Effekt in Sonnencremes basiert auf der starken Streuung von Licht an Titandioxid“, sagt Van Opdenbosch – „was wir auch für unseren Zufallslaser brauchten.“ Und „unser Laser ist insofern 'zufällig', weil das – über die biogene Struktur des Labor-Filterpapiers – in verschiedene Richtungen abgelenkte Licht auch in die Gegenrichtung gestreut werden kann“, beschreibt Daniel Van Opdenbosch das Prinzip.

Zufallslaser doch nicht so zufällig

Dass die Lichtwellen bei aller Zufälligkeit dennoch steuerbar sind, haben wiederum Kolleginnen und Kollegen um Professor Claudio Conti vom Institut für Komplexe Systeme des Italienischen Nationalen Forschungsrates in Rom herausgefunden, mit denen Daniel Van Opdenbosch und Cordt Zollfrank kooperierten. Mit Hilfe eines Spektrometers konnten sie verschiedene im Material entstehende Laserwellenlängen unterscheiden und getrennt voneinander lokalisieren.

„Der Versuchsaufbau, mit dem die Proben kartiert wurden, bestand aus einem grünen Laser, dessen Energie verändert werden konnte, aus Mikroskopielinsen und einem mobilen Tisch, mit dem die Probe abgefahren werden konnte“, beschreibt Van Opdenbosch das Vorgehen.

„Damit konnten die Kollegen herausfinden, dass bei verschiedenen Energielevels unterschiedliche Bereiche des Materials verschiedene Laserwellen ausstrahlen.“ So analysiert, ist es möglich, den Laser nach Belieben einzustellen und zu bestimmen, in welche Richtung und mit welcher Helligkeit er strahlt.

Damit rücken Möglichkeiten praktischer Anwendung in greifbare Nähe. "Solche Materialien können beispielsweise als Mikro-Schalter oder Detektoren für strukturelle Änderungen nützlich sein", sagt Van Opdenbosch.

Publikation:
Ghofraniha, Neda, Luca La Volpe, Daniel Van Opdenbosch, Cordt Zollfrank, and Claudio Conti: Biomimetic Random Lasers with Tunable Spatial and Temporal Coherence, Advanced Optical Materials, September 2016. doi:10.1002/adom.201600649.

http://onlinelibrary.wiley.com/doi/10.1002/adom.201600649/full

Kontakt

Technische Universität München
Wissenschaftszentrum Straubing
Professur für Biogene Polymere
Professor Cordt Zollfrank
+49 (9421) 187 - 450
cordt.zollfrank@tum.de
http://www.wz-straubing.de

Dr. Daniel Van Opdenbosch
+49 (8161) 984 - 452
daniel.van-opdenbosch@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33517/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Biogene Keramiken Komplexe Systeme Laser Licht Polymere Random Titandioxid Zufallslaser

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften