Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster anatomischer Atlas für die Genaktivität eines Säugetiers

16.02.2011
Internationales Wissenschaftlerkonsortium analysiert die aktiven Gene im Mausembryo

18000 Gene und 400 MicroRNAs, die jeweils in 24 unterschiedlichen Bildern untersucht wurden; 1420 anatomische Strukturen, an denen die aktiven Gene gekennzeichnet sind; 1002 gewebespezifische Gene als neuartige Marker für 37 verschiedene anatomische Strukturen - mit dem „hochaufgelösten anatomischen Atlas des Transkriptoms im Mausembryo“ stellt das EURExpress Konsortium, eine internationale Gruppe von Wissenschaftlern aus zwölf europäischen Forschungseinrichtungen, die weltweit erste umfassende Übersicht über die räumliche und zeitliche Aktivität aller bekannten Gene eines ganzen Säugerorganismus zu einem bestimmten Zeitpunkt seiner Entwicklung zur Verfügung. In der renommierten Fachzeitschrift PLoS Biology beschreiben die Forscher, welche Gene in den verschiedenen Organen eines 14,5 Tages alten Mausembryos aktiv sind und erläutern, wie ihre Daten die Suche nach Kandidatengenen für genetische und komplexe Erkrankungen unterstützen kann. (PloS Biology, Januar 2011)


Expressionsmuster von sechs unterschiedlichen Genen in Längsschnitten von 14,5 Tage alten Mausembryonen. Die dunkel gefärbten Bereiche geben an, wo die jeweils untersuchten Gene aktiv sind. © MPI für molekulare Genetik

Säugling, Kleinkind, erwachsener Mensch – alle Organismen durchlaufen verschiedene Lebensstadien, in denen ihr Körper unterschiedliche Funktionen erfüllen muss. Die Erbinformation eines Individuums wird bei seiner Zeugung festgelegt und ist in allen Zellen des Organismus identisch – unabhängig von der jeweiligen Entwicklungsstufe. Die Entwicklung unterschiedlicher Organe und Körperteile, die in verschiedenen Lebensabschnitten unterschiedliche Funktionen im Organismus wahrnehmen müssen, ist daher nur möglich, weil zu unterschiedlichen Zeitpunkten unterschiedliche Gene in den einzelnen Zellen angeschaltet sind.

Aber wann sind welche Gene in welcher Zelle aktiv? Die Antwort ist von entscheidender Bedeutung für das Verständnis der physiologischen Funktion eines Gens. In fünfjähriger Arbeit, die aus Mitteln der Europäischen Union finanziert wurde, haben die Forscher des EURExpress Konsortiums, unter ihnen die Arbeitsgruppen von Stefan Mundlos und Marie-Laure Yaspo vom Berliner Max-Planck-Institut für molekulare Genetik, die Aktivität aller bekannten Gene der Maus in allen Gewebestrukturen eines 14,5 Tage alten Mausembryos untersucht. Sie nutzten dafür ein kolorimetrisches Verfahren namens RNA in situ Hybridisierung, das die Expression von Genen mit zellulärer Auflösung in ihrem natürlichen Kontext sichtbar macht.

Die Ergebnisse dieser Arbeit stehen in Form einer interaktiven Webdatenbank für die wissenschaftliche Gemeinschaft zur Verfügung. „Die Aufbereitung der Ergebnisse erlaubt es anderen Gruppen, die Daten für ihre eigenen Untersuchungen zu nutzen“, erläutert Marc Sultan, Wissenschaftler am MPI für molekulare Genetik. „Wir selber nutzen die Ergebnisse bereits für andere Untersuchungen, indem wir beispielsweise für bestimmte Krankheitsbilder zeigen, mit welchen Genaktivitäten sie verbunden sind bzw. welche Gene an der Entstehung der Krankheit beteiligt sein könnten.“ Die Qualität und die exakte räumliche Verteilung der Daten erlauben darüber hinaus neue Erkenntnisse über die komplexe segmentale Organisation des Säugerhirns und geben Hinweise für die Aufklärung wichtiger Signalwege, die zum Beispiel an der Entwicklung der Niere beteiligt sind.

Genomweite Genexpressionsanalysen spielen heute eine wichtige Rolle für die funktionelle Genomik. Die Forscher hoffen, dass ihre Ergebnisse künftig zur Aufklärung zahlreicher weiterer Fragestellungen beitragen werden, wie zum Beispiel die Bestimmung regionaler Unterschiede in komplexen Organen, die Suche nach regulatorischen Elementen für die Steuerung gewebsspezifischer Genaktivitität, die Charakterisierung von Gen-Netzwerken, die zwischen verschiedenen Organen aktiv sind oder auch die Untersuchung von möglichen Kandidatengenen für komplexe und angeborere Erkrankungen.

PM/HR

Originalveröffentlichung:
Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S et al. (2011). A High-Resolution Anatomical Atlas of the Transcriptome in the Mouse Embryo. PLoS Biology 9(1): e1000582. doi:10.1371/journal.pbio.1000582
Kontakt:
Dr. Patricia Marquardt, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Genetik, Berlin
Tel: +49/30/8413 1716
Email: patricia.marquardt@molgen.mpg.de

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://chr21.molgen.mpg.de/projects/eurexpress.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik