Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der erste Schritt das (wässrige) Ergebnis bestimmt

24.06.2010
Forscher aus Jena und Erlangen-Nürnberg zeigen Weg zur effektiveren Wasserstoffbildung

Energie aus Wasserstoff – an dieser Lösung zur Überwindung der Energiekrise arbeiten Wissenschaftler weltweit und versuchen u. a., das Sonnenlicht als Triebkraft für die Wasserspaltung in Wasserstoff und Sauerstoff zu nutzen.

Bei der Nachbildung der Photosynthese im Labor ist jetzt ein Team aus Wissenschaftlern der Universitäten Jena und Erlangen-Nürnberg sowie vom Institut für Photonische Technologien (IPHT) in Jena einen großen Schritt vorangekommen.

Die Physiker und Chemiker konnten in ihren Versuchen nachweisen, dass der erste Schritt bereits die Effizienz der Wasserstoffbildung bestimmt. „Das ist so, als wenn man durch das Umdrehen des Zündschlüssels im Auto bereits über das Ziel entscheidet“, verdeutlicht PD Dr. Michael Schmitt vom Institut für Physikalische Chemie (IPC) der Universität Jena. Wissenschaftlich formuliert: „Der Franck-Condon-Punkt muss so gestaltet werden, dass schon der initiale Elektronentransferprozess in Richtung des katalytisch aktiven Zentrums erfolgt.“ Die Erkenntnisse sind im renommierten Fachmagazin „Angewandte Chemie“ publiziert worden.

Die Wissenschaftler setzen bei ihren Versuchen zur effizienteren Energieumwandlung auf chemische Photokatalysatoren (sog. PMDs). Licht wird dabei genutzt, um Elektronen gezielt von einer Untereinheit dieses Moleküls zu einer anderen springen zu lassen oder über eine Ligand genannte „Brücke“ zu transportieren.

Wie bei der Photosynthese hat der Prozess, den die Chemiker im Labor ablaufen lassen, zwei wesentliche Stationen: Ein spezieller Metallkomplex mit Ruthenium als ausschlaggebendem Bestandteil dient als Antenne, die das Licht einfängt. Das Ruthenium gibt daraufhin ein Elektron ab, das auf das Reaktionszentrum wechselt, dessen Kern ein Palladiumatom bildet. An diesem Metallzentrum wird schließlich Wasserstoff gebildet. Entgegen der perfekten Natur gelangen im Laboraufbau noch nicht alle Elektronen vom Ruthenium auf das Palladiumzentrum, einige wählen „Abzweigungen", geraten in „Kreisverkehr“ oder „Sackgassen“ und gehen damit für die Reaktion verloren. „Mit Hilfe der Resonanz-Raman-Spektroskopie konnten wir beobachten und sehen, wohin das Elektron nach Lichtanregung springt", beschreibt Prof. Dr. Jürgen Popp, Direktor von IPC und IPHT. „Wir konnten dadurch ein neues Syntheseparadigma für solche Photosynthesekomplexe entwickeln“, ergänzt Michael Schmitt.

Das Forscherteam konnte nachweisen, dass die Effektivität der Wasserstofferzeugung durch die Wellenlänge des Lichtes verändert wird. Sie ist umso effizienter, je roter das Licht ist, das zur Anregung verwendet wird – Licht von einer Wellenlänge von 550 nm ist optimal. „Je roter das Licht, umso mehr Elektronen gehen zum Brückenliganden, der das Ruthenium mit dem Palladium verbindet“, erklärt Schmitt. Außerdem entscheidet der erste Schritt bei einer Absorption eines Liganden darüber, wohin das Elektron geht und damit, wie effektiv die Energiegewinnung ist.

„Durch diese Erkenntnisse können wir gezielt Barrieren aufbauen, damit die Elektronen nicht vom ,rechten Weg' abkommen, sondern ausschließlich beim Palladium landen", weist Prof. Popp auf das Anwendungspotenzial dieser Grundlagenforschung. Im Labor lag bei ersten Versuchen die Wasserstoffgewinnung um das vierfache über den früheren Werten, aber noch weit unter der notwendigen Rate. Nun liegt es an den Chemikern, wie dem beteiligten Prof. Dr. Sven Rau, die molekularen Katalysatorenkomplexe so zu optimieren, dass „keine Elektronen mehr vom terminalen Liganden aufgenommen werden“, erläutert Schmitt.

Noch, das wissen die Wissenschaftler, ist es ein weiter Weg, die Photosynthese der Natur korrekt und effizient nachzuahmen. „Aber wir sind dank unserer spektroskopischen Analyseverfahren einen guten Schritt auf diesem Weg weitergekommen“, ist sich Prof. Popp sicher.

Originalpublikation:
Stefanie Tschierlei, Michael Karnahl, Martin Presselt, Benjamin Dietzek, Julien Guthmuller, Leticia González, Michael Schmitt, Sven Rau und Jürgen Popp: „Photochemisches Schicksal: Der erste Schritt bestimmt die Effizienz der H2-Bildung mit einem supramolekularen Photokatalysator“, Angewandte Chemie 2010, 122, 4073-4076.
Kontakt:
Prof. Dr. Jürgen Popp / PD Dr. Michael Schmitt
Institut für Physikalische Chemie der Universität Jena
Helmholtzweg 4, 07743 Jena
Tel.: 03641 / 948320 oder 948367
E-Mail: juergen.popp[at]uni-jena.de / m.schmitt[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit