Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgsversprechende T-Zelltherapie -Transfer von Immunzellen kann immunschwache Patienten schützen

17.06.2014

Müssen sich Patienten einer Knochenmarkstransplantation unterziehen, schwächt das ihr Immunsystem. Viren, die von einem gesunden Immunsystem in Schach gehalten werden, können dann lebensbedrohliche Infektionen auslösen.

Wissenschaftler der Technischen Universität München (TUM) entwickelten jetzt zusammen mit Kollegen aus Frankfurt, Würzburg und Göttingen eine Methode, die Patienten nach einer Transplantation schonend vor diesen Infektionen schützen kann. Sie wurde bereits bei mehreren Patienten erfolgreich eingesetzt.

Die Zellen des menschlichen Immunsystems werden aus speziellen Stammzellen im Knochenmark gebildet. Bei einer Erkrankung des Knochenmarks wie zum Beispiel Leukämie, müssen die entarteten Zellen durch Bestrahlung oder Chemotherapie zerstört werden. Danach muss das blutbildende System durch Gabe von Stammzellen aus dem Blut eines gesunden Spenders ersetzt werden. Weil der Immunschutz deshalb zeitweise fehlt, können sich Viren, die normalerweise kontrolliert werden, vermehren.

Ein großes klinisches Problem stellt hierbei das Zytomegalievirus (CMV) dar, das in geschwächten Personen schwere Schädigungen der Lunge oder der Leber hervorrufen kann. Gesunde Menschen entwickeln bei einer CMV-Infektion dagegen meist keine Symptome, weil das Virus durch spezifische Immunzellen dauerhaft in Schach gehalten wird.

In ihrer Arbeit konnten die Wissenschaftler jetzt zeigen, dass schon die zusätzliche Übertragung von wenigen spezifischen Immunzellen ausreicht, um den immungeschwächten Empfänger vor Infektionen zu schützen. Sie verwendeten hierfür T-Zellen, die Erreger gezielt erkennen und vernichten können.

Im Tiermodell getestet

Zuerst isolierten Dr. Christian Stemberger, Erstautor der Studien, und seine Kollegen T-Zellen aus dem Blut von gesunden Spendermäusen. Diese Immunzellen waren gegen molekulare Bestandteile einer Bakterienart gerichtet, die normalerweise schwere Infektionen in den Tieren hervorruft. Sie verabreichten diese T-Zellen anschließend Empfängermäuse, die aufgrund einer genetischen Veränderung keine eigenen Immunzellen mehr bilden konnten - ähnlich wie bei Leukämiepatienten.

Nach der Übertragung der T-Zellen infizierten die Forscher die behandelten Empfängermäuse mit den Bakterien. Die Ergebnisse zeigten, dass die Tiere jetzt einen wirkungsvollen Immunschutz gegen die Erreger hatten und nicht mehr erkrankten. „Wirklich überraschend war, dass schon die Nachkommen einer einzigen übertragenen Spenderzelle ausreichten, um die Tiere vollständig zu schützen“, erklärt Christian Stemberger.

In Patienten erfolgreich eingesetzt

Die Wissenschaftler setzten schließlich virus-spezifische T-Zellen zur Behandlung zweier schwerkranker Patienten ein. Aufgrund eines angeborenen Immundefekts bzw. einer Leukämieerkrankung mussten beide mit einer Stammzelltransplantation behandelt werden. Dadurch abwehrgeschwächt, brachen in beiden Patienten CMV-Infektionen aus.

Die Wissenschaftler isolierten deshalb mit einer neuen Methode aus dem Blut der jeweiligen Spender T-Zellen, die gezielt gegen das CMV-Virus gerichtet waren, und übertrugen niedrige Mengen davon auf die Patienten. Das Ergebnis: nach nur wenigen Wochen vermehrten sich die virus-spezifischen Zellen stark, gleichzeitig sank die Anzahl der Viren im Blut. “Dass schon wenige Zellen Schutz bieten können, ist ein großer Vorteil. Damit können diese in niedrigen, gut verträglichen Dosen bereits prophylaktisch eingesetzt werden“, erklärt Dr. Michael Neuenhahn, Letztautor der Studie.

Das Potential der identifizierten T-Zellen soll nun im Rahmen einer klinischen Studie getestet werden. Hierfür steht neben einem innovativen Zellaufreinigungsverfahren seit kurzem auch eine neue Einrichtung der TUM zur sterilen Herstellung von Zellprodukten zur Verfügung. Bei TUMCells können Zellen unter hochreinen Bedingungen, in so genannten Reinräumen produziert werden. In Zukunft wollen die Wissenschaftler ihre aktuellen Ergebnisse und TUMCells nutzen, um innovative Zelltherapeutika zu entwickeln.

Originalpublikation:
Christian Stemberger, Patricia Graef, Marcus Odendahl, Julia Albrecht, Georg Dössinger, Florian Anderl, Veit R. Buchholz, Georg Gasteiger, Matthias Schiemann, Götz U. Grigoleit, Friedhelm R. Schuster, Arndt Borkhardt, Birgitta Versluys, Torsten Tonn, Erhard Seifried, Hermann Einsele, Lothar Germeroth, Dirk H. Busch und Michael Neuenhahn, Lowest numbers of primary CD8+ T cells can reconstitute protective immunity upon adoptive immunotherapy, Blood, 2014.
DOI: 10.1182/blood-2013-12-547349

Kontakt:
Dr. Michael Neuenhahn
Institut für Medizinische Mikrobiologie, Immunologie und Hygiene
Technische Universität München
Trogerstr. 30
81675 München
Tel.: 089/4140 – 7454
Email: michael.neuenhahn@tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31607/ - Dieser Text im Web
http://www.tum.de/die-tum/aktuelles/ - Pressemeldungen der Technischen Universität München

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit