Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Enzyme den Energiestoffwechsel regulieren: Neue Einblicke in Signalnetzwerke der Zelle

13.07.2011
Mitochondrien sind als "Kraftwerke der Zelle" bekannt, denn sie erfüllen zentrale Funktionen für den Stoffwechsel der Zelle.

Ein internationales Forschungsteam um Professor Dr. Clemens Steegborn, Universität Bayreuth, hat jetzt ein System biochemischer Signale und Prozesse aufgedeckt, die im wechselseitigen Zusammenwirken den Energiestoffwechsel innerhalb der Zelle steuern.

Im "Journal of Biological Chemistry" berichten die Wissenschaftler über ihre Ergebnisse. Diese werden die Grundlagenforschung zu signalgesteuerten Prozessen in der Zelle weiter voranbringen. Sie eröffnen zugleich interessante Perspektiven für die Entwicklung medizinischer Wirkstoffe.

Damit die Zellatmung nicht ins Stocken gerät: der Botenstoff cAMP

Eine zentrale Bedeutung für den Energiestoffwechsel in der Zelle hat das cyclische Adenosinmonophosphat, kurz: "cAMP". Es fungiert als Botenstoff, indem es Signale weiterleitet, die für einen funktionierenden Stoffwechsel unabdingbar sind. In den Mitochondrien aktiviert es Proteine, die an der Zellatmung beteiligt sind, und steuert so den Energiestoffwechsel. Die cAMP-Moleküle befinden sich im Innenraum der Mitochondrien, der sog. Matrix, die von einer inneren und einer äußeren Membran umschlossen wird. Ist eine erhöhte Anzahl cAMP-Moleküle darin vorhanden, dann wird der Energiestoffwechsel angetrieben. Ein Abbau der cAMP-Moleküle wiederum schwächt den Energiestoffwechsel.

Von Enzymen gesteuert: cAMP als Schalter für den Energiestoffwechsel

An dieser Stelle setzen die Forschungsergebnisse an, die Steegborn zusammen mit seinen Kollegen an der Cornell University in New York und an der Ruhr-Universität Bochum jetzt veröffentlicht hat. Die Wissenschaftler haben entdeckt, wie der Abbau des cAMP in den Mitochondrien im Detail vor sich geht. So haben sie einen wichtigen Mechanismus für die Regulation der Botenstoffmenge entschlüsselt:

• Der Aufbau von cAMP wird durch ein Enzym, die Adenylatcyclase (sAC), gesteuert. Denn dieses Enzym produziert cAMP-Moleküle ausgehend von dem zelleigenen Energiespeicher Adenosintriphosphat (ATP). Damit das Enzym diese katalytische Funktion übernimmt, muss es seinerseits z.B. durch Bicarbonate aktiviert werden.

• Der gegenläufige Vorgang, nämlich der Abbau von cAMP, wird durch ein anderes Enzym in Gang gesetzt. Es handelt sich hierbei um ein Protein aus der Familie der Phosphodiesterasen (PDE); genau genommen um eine Isoform von PDE2A. Auch dieses Enzym muss, damit es die in den Mitochondrien vorhandene cAMP-Menge verringert, aktiviert werden. Dies geschieht durch Moleküle, die sich an einen Bereich an einem Ende des Proteins – dem N-Terminus der PDE2A-Moleküle – anlagern.

Auf diese Weise wirkt der Botenstoff cAMP wie ein von Enzymen gesteuerter Schalter, der den Energiestoffwechsel steigert oder schwächt. In welcher "Stellung" sich dieser Schalter befindet, hängt davon ab, welches der beiden Enzyme dominiert: Adenylatcyclase (sAC) erhöht die cAMP-Menge, Phosphodiesterase (PDE2A) verringert sie.

Von der Maus bis zum Menschen: Der gleiche Steuerungsmechanismus in Säugetieren

Die in den Mitochondrien vorhandene Phosphodiesterase (PDE2A) hat die besondere Aufmerksamkeit der Forscher geweckt. Sie haben dieses Enzym nicht nur in Mitochondrien aus verschiedenen Zellgeweben von Mäusen und Ratten, sondern auch in Mitochondrien aus menschlichen Zellkulturen gefunden. "Aufgrund dieser Laborergebnisse können wir davon ausgehen, dass der von uns beschriebene Mechanismus zur Steuerung des Energiestoffwechsels vom Prinzip her in allen Säugetieren so abläuft", erklärt Steegborn. Ihm und seinen Kollegen ist auch der Nachweis gelungen, wie die PDE2A in die Mitochondrien hineingerät. Es ist der N-Terminus, der dafür sorgt, dass diese besondere Form der Phosphodiesterase durch die schützende Doppelmembran der Mitochondrien hindurchgelassen wird.

Welche Moleküle es sind, die sich innerhalb der Mitochondrien an den regularischen Bereich der PDE2A anlagern und so das Enzym aktivieren, konnte bisher noch nicht geklärt werden. Derzeit prüfen Steegborn und seine Mitarbeiter die Vermutung, dass es sich bei diesen Molekülen um cyclisches Guanosinmonophosphat (cGMP) handeln könnte. Auch dies ist ein zelleigener Botenstoff, der aber bisher nur außerhalb der Mitochondrien im Zytosol nachgewiesen werden konnte.

Neue Perspektiven für die Bekämpfung von Krankheiten

Die Entdeckung, dass Phosphodiesterase den aktivierenden Einfluss des cAMP auf die Zellatmung schwächt, bietet auch der medizinischen Wirkstoffforschung neue Chancen. Schon heute sind in anderen Zusammenhängen Arzneistoffe im Gebrauch, die als Inhibitoren in der Lage sind, die Wirkungen von Phosphodiesterasen zu hemmen. "Unsere Erkenntnisse bieten deshalb einen aussichtsreichen Ansatzpunkt, Substanzen zu entwickeln, die dem Abbau von cAMP gezielt entgegenwirken", meint Steegborn. Derartige Wirkstoffe würden folglich den Energiestoffwechsel antreiben und könnten so dazu beitragen, Erkrankungen des Stoffwechsels oder auch neuronale Krankheiten erfolgreich zu bekämpfen.

Veröffentlichung:

Rebeca Acin-Perez, Michael Russwurm, Kathrin Günnewig, Melanie Gertz, Georg Zoidl, Lavoisier Ramos, Jochen Buck, Lonny R. Levin, Joachim Rassow, Giovanni Manfredi, Clemens Steegborn,
A phosphodiesterase 2A isoform localized to mitochondria regulates respiration,
in: Journal of Biological Chemistry,
First Published on July 1, 2011,
DOI-Bookmark: 10.1074/jbc.M111.266379
Ansprechpartner für weitere Informationen:
Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0) 921 / 55-2421 und 55-2420
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie