Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung des Nervensystems: Protein reguliert, dass sich Nervenfortsätze abbauen

31.05.2017

Während sich ein Organismus entwickelt, verschwinden einige Verbindungen von Nervenzellen. Wissenschaftler des Exzellenzclusters "Cells in Motion" haben einen physiologischen Ablauf entdeckt, der dabei eine wichtige Rolle spielt. Die Studie ist im Fachmagazin "Embo Journal" erschienen.

Nervenzellen gehen mit ihren langen Fortsätzen, den Axonen und Dendriten, Verbindungen untereinander ein und leiten so Signale weiter. Nicht nur bei Krankheiten des Nervensystems, sondern auch, wenn sich ein Organismus normal entwickelt, verschwinden einige dieser Verbindungen wieder. Doch welche Mechanismen stecken dahinter?


Links: Nervenzelle einer Fruchtfliegenlarve. Mitte: Bei der verpuppten Larve bauen sich die Zellfortsätze im Normalfall ab. Rechts: Fehlt das Protein PAR-1, ist der Abbau der Dendriten gestört.

Svende Herzmann et al./Embo Journal

Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters "Cells in Motion" der Universität Münster haben nun einen physiologischen Ablauf entdeckt, der beim Abbau von neuronalen Zellfortsätzen eine wichtige Rolle spielt. Das Protein PAR-1 löst dabei eine Reihe aufeinanderfolgender Signale aus, und dem Zerfall des Zellskeletts kommt eine Schlüsselfunktion zu. Die Studie ist aktuell im Fachmagazin "Embo Journal" erschienen.

Manche Verknüpfungen zwischen Nervenzellen werden im Laufe der Entwicklung wieder abgebaut, weil sie keine spezifische Funktion ausgebildet haben. Dabei bilden sich die Axone und Dendriten zurück, mit denen sich Nervenzellen verbinden. Wissenschaftler nennen diesen Abbau von Zellfortsätzen Pruning. "Das Pruning ist ein interessanter Entwicklungsmechanismus, der noch nicht gut verstanden ist", sagt Dr. Sebastian Rumpf.

Der Biologe leitet am Exzellenzcluster eine Nachwuchsforschergruppe, die sich darauf spezialisiert hat, diesen Prozess in der Fruchtfliege Drosophila melanogaster zu untersuchen. "Wir sehen uns einen Typ von Nervenzellen an, der während der Entwicklung spezifisch alle seine Dendriten verliert", erklärt Svende Herzmann, Erstautorin der Studie und Doktorandin der Graduiertenschule des Exzellenzclusters.

Bereits seit einigen Jahren ist bekannt: Bevor die Dendriten abbrechen, bauen sich Bestandteile des Zellskeletts ab. Es handelt sich dabei um die röhrenförmigen Mikrotubuli, welche die Zellen und Dendriten stabilisieren. Sebastian Rumpf und sein Team fanden nun heraus, welche komplexen Mechanismen hinter diesem Abbau der Mikrotubuli stecken.

Dazu untersuchten sie genetische Mutationen: In Nervenzellen von Fruchtfliegen, denen das PAR-1 fehlte, blieben die Mikrotubuli stabil. Der Mechanismus dahinter: PAR-1 vermindert die Aktivität des Proteins Tau, das an die Mikrotubuli bindet und sie zusammenhält. Tau hemmt seinerseits das Protein Katanin, das die Mikrotubuli zerteilt. Ist das Tau-Protein weniger aktiv, kann Katanin "zuschlagen" und es kommt zu einem Abbau der Mikrotubuli.

Mithilfe der Lebendzellmikroskopie zeigten die Wissenschaftler, dass diese Prozesse in der frühen Puppenphase der Fruchtfliegen passieren. "Während die Larven noch stabile Dendriten hatten, konnten wir bereits deutliche Lücken im Zellskelett beobachten", sagt Svende Herzmann. Das Verschwinden der Mikrotubuli führte letztlich dazu, dass die dendritischen Zellfortsätze abbrachen.

Die Proteine PAR-1 und Tau waren zuvor bereits in Zusammenhang mit neurodegenerativen Krankheiten wie Alzheimer gebracht worden. Welche Relevanz diese Interaktion im gesunden Organismus hat, war bisher jedoch noch weitgehend unklar.

Die neuen Ergebnisse zeigten: Wenn das Zellskelett durch PAR-1 abgebaut war, wurden die Zellfortsätze sehr schnell dünn und ihre Plasmamembranen brüchig. "Wir glauben, dass es einen direkten Zusammenhang zwischen den stabilisierenden Mikrotubuli und der Zellmembran gibt", sagt Sebastian Rumpf.

"Dadurch, dass wir den Signalprozess und die Mechanismen hinter dem Zerfall der Mikrotubuli besser verstehen, sind wir einen großen Schritt weitergekommen, wenn wir den Abbau von neuronalen Verbindungen untersuchen", so der Biologe. Die Ergebnisse dieser Grundlagenforschung sollen den Forschern letztendlich helfen, die Entwicklung des Nervensystems besser zu verstehen. Ob es kurzfristig Anwendungen für diese Befunde gibt, ist derzeit nicht absehbar. "Aber es ist schon interessant, dass diese Proteine sowohl eine Rolle beim physiologischen als auch beim pathologischen Zerfall von Nervenverbindungen spielen", sagt Sebastian Rumpf.

Originalpublikation

Herzmann S, Krumkamp R, Rode S, Kintrup C, Rumpf S. PAR-1 Promotes Microtubule Breakdown During Dendrite Pruning in Drosophila. EMBO J 2017; DOI: 10.15252/embj.201695890

Redaktion/Medienkontakt:

Svenja Ronge
Exzellenzcluster "Cells in Motion"
Pressereferentin / Forschungsredakteurin
Tel: +49 251 83-49310
svenja.ronge@uni-muenster.de

Weitere Informationen:

http://emboj.embopress.org/content/early/2017/05/26/embj.201695890 Originalpublikation
https://www.uni-muenster.de/Cells-in-Motion/de/people/index.html Exzellenzcluster "Cells in Motion"

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics