Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung des Nervensystems: Protein reguliert, dass sich Nervenfortsätze abbauen

31.05.2017

Während sich ein Organismus entwickelt, verschwinden einige Verbindungen von Nervenzellen. Wissenschaftler des Exzellenzclusters "Cells in Motion" haben einen physiologischen Ablauf entdeckt, der dabei eine wichtige Rolle spielt. Die Studie ist im Fachmagazin "Embo Journal" erschienen.

Nervenzellen gehen mit ihren langen Fortsätzen, den Axonen und Dendriten, Verbindungen untereinander ein und leiten so Signale weiter. Nicht nur bei Krankheiten des Nervensystems, sondern auch, wenn sich ein Organismus normal entwickelt, verschwinden einige dieser Verbindungen wieder. Doch welche Mechanismen stecken dahinter?


Links: Nervenzelle einer Fruchtfliegenlarve. Mitte: Bei der verpuppten Larve bauen sich die Zellfortsätze im Normalfall ab. Rechts: Fehlt das Protein PAR-1, ist der Abbau der Dendriten gestört.

Svende Herzmann et al./Embo Journal

Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters "Cells in Motion" der Universität Münster haben nun einen physiologischen Ablauf entdeckt, der beim Abbau von neuronalen Zellfortsätzen eine wichtige Rolle spielt. Das Protein PAR-1 löst dabei eine Reihe aufeinanderfolgender Signale aus, und dem Zerfall des Zellskeletts kommt eine Schlüsselfunktion zu. Die Studie ist aktuell im Fachmagazin "Embo Journal" erschienen.

Manche Verknüpfungen zwischen Nervenzellen werden im Laufe der Entwicklung wieder abgebaut, weil sie keine spezifische Funktion ausgebildet haben. Dabei bilden sich die Axone und Dendriten zurück, mit denen sich Nervenzellen verbinden. Wissenschaftler nennen diesen Abbau von Zellfortsätzen Pruning. "Das Pruning ist ein interessanter Entwicklungsmechanismus, der noch nicht gut verstanden ist", sagt Dr. Sebastian Rumpf.

Der Biologe leitet am Exzellenzcluster eine Nachwuchsforschergruppe, die sich darauf spezialisiert hat, diesen Prozess in der Fruchtfliege Drosophila melanogaster zu untersuchen. "Wir sehen uns einen Typ von Nervenzellen an, der während der Entwicklung spezifisch alle seine Dendriten verliert", erklärt Svende Herzmann, Erstautorin der Studie und Doktorandin der Graduiertenschule des Exzellenzclusters.

Bereits seit einigen Jahren ist bekannt: Bevor die Dendriten abbrechen, bauen sich Bestandteile des Zellskeletts ab. Es handelt sich dabei um die röhrenförmigen Mikrotubuli, welche die Zellen und Dendriten stabilisieren. Sebastian Rumpf und sein Team fanden nun heraus, welche komplexen Mechanismen hinter diesem Abbau der Mikrotubuli stecken.

Dazu untersuchten sie genetische Mutationen: In Nervenzellen von Fruchtfliegen, denen das PAR-1 fehlte, blieben die Mikrotubuli stabil. Der Mechanismus dahinter: PAR-1 vermindert die Aktivität des Proteins Tau, das an die Mikrotubuli bindet und sie zusammenhält. Tau hemmt seinerseits das Protein Katanin, das die Mikrotubuli zerteilt. Ist das Tau-Protein weniger aktiv, kann Katanin "zuschlagen" und es kommt zu einem Abbau der Mikrotubuli.

Mithilfe der Lebendzellmikroskopie zeigten die Wissenschaftler, dass diese Prozesse in der frühen Puppenphase der Fruchtfliegen passieren. "Während die Larven noch stabile Dendriten hatten, konnten wir bereits deutliche Lücken im Zellskelett beobachten", sagt Svende Herzmann. Das Verschwinden der Mikrotubuli führte letztlich dazu, dass die dendritischen Zellfortsätze abbrachen.

Die Proteine PAR-1 und Tau waren zuvor bereits in Zusammenhang mit neurodegenerativen Krankheiten wie Alzheimer gebracht worden. Welche Relevanz diese Interaktion im gesunden Organismus hat, war bisher jedoch noch weitgehend unklar.

Die neuen Ergebnisse zeigten: Wenn das Zellskelett durch PAR-1 abgebaut war, wurden die Zellfortsätze sehr schnell dünn und ihre Plasmamembranen brüchig. "Wir glauben, dass es einen direkten Zusammenhang zwischen den stabilisierenden Mikrotubuli und der Zellmembran gibt", sagt Sebastian Rumpf.

"Dadurch, dass wir den Signalprozess und die Mechanismen hinter dem Zerfall der Mikrotubuli besser verstehen, sind wir einen großen Schritt weitergekommen, wenn wir den Abbau von neuronalen Verbindungen untersuchen", so der Biologe. Die Ergebnisse dieser Grundlagenforschung sollen den Forschern letztendlich helfen, die Entwicklung des Nervensystems besser zu verstehen. Ob es kurzfristig Anwendungen für diese Befunde gibt, ist derzeit nicht absehbar. "Aber es ist schon interessant, dass diese Proteine sowohl eine Rolle beim physiologischen als auch beim pathologischen Zerfall von Nervenverbindungen spielen", sagt Sebastian Rumpf.

Originalpublikation

Herzmann S, Krumkamp R, Rode S, Kintrup C, Rumpf S. PAR-1 Promotes Microtubule Breakdown During Dendrite Pruning in Drosophila. EMBO J 2017; DOI: 10.15252/embj.201695890

Redaktion/Medienkontakt:

Svenja Ronge
Exzellenzcluster "Cells in Motion"
Pressereferentin / Forschungsredakteurin
Tel: +49 251 83-49310
svenja.ronge@uni-muenster.de

Weitere Informationen:

http://emboj.embopress.org/content/early/2017/05/26/embj.201695890 Originalpublikation
https://www.uni-muenster.de/Cells-in-Motion/de/people/index.html Exzellenzcluster "Cells in Motion"

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics