Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung von "Chamäleon-Zellen" für eine bessere Narbenbildung?

24.06.2010
Forschern des Instituts für Entwicklungs- und Krebsbiologie (IBDC), des CNRS [1] und der Universität Nizza ist es gelungen, Zellen bei der Drosophilia Fliege nachzuweisen, die während der Embryogenese erstaunlicherweise ihre Identität verändern.

Die Wissenschaftler haben diese "Chamäleon-Zellen" in einem Narbenbildungs-Modell untersucht und konnten zeigen, wie diese Zellen die Gewebespannung reduzieren und somit ein perfektes Zusammenwachsen der Epidermis (bzw. Oberhaut) fördern.

Diese Ergebnisse eröffnen neue Forschungswege in der regenerativen Medizin. Sie wurden am 8. Juni 2010 in der Fachzeitschrift PloS Biology [2] veröffentlicht.

Die Forscher haben die sogenannte "Rückenschließung" an Embryonen der Drosophilia Fliege untersucht. Bei diesem wichtigen Schritt der Morphogenese [3] der Drosophilia treffen 2 Epidermen aufeinander und wachsen zusammen. Dieses Zusammenwachsen der beiden Gewebe ist dem Zusammenwachsen einer Schnittwunde sehr ähnlich und ist somit sehr gut als Modell der Narbenbildung geeignet. Bei der Beobachtung der Drosophilia Embryonen während der „Rückenschließung“ bemerkten die Forscher, dass manche Zellen die Eigenschaft haben, unter normalen Bedingungen der Embryonalentwicklung ihre Identität (oder differenzierten Typ) und ihren Ort zu wechseln. In der Regel können differenzierte Zellen ihre Identität nicht verändern und vermischen sich nie mit Zellen eines anderen Teilgebiets des Embryos. Dieser Identitätswechsel, auch als zelluläre Plastizität bekannt, ist bereits aus pathologischen Fällen bekannt, bei denen die erneute Differenzierung der Zelle meistens eine oder mehrere Zellteilungen erfordert. Im Fall der Drosophilia Fliege erfolgt die zelluläre Plastizität durch eine genetische Kontrolle, die auch bei der Geweberegeneration der erwachsenen Fliege eine Rolle spielt. Die Forscher konnten beobachten, dass je mehr "Chamäleon-Zellen" wandern, desto geringer wird die Gewebespannung. Nebenzellen schieben sich zwischen die "Chamäleon-Zellen" und schaffen dadurch einen sogenannten "Entspannungs-Abschnitt" für das Gewebe, wodurch ein perfektes Zusammenwachsen bei der Rückenschließung ohne sichtbare Narbenbildung ermöglicht wird.

[1] CNRS: französisches Zentrum für wissenschaftliche Forschung

[2] "JNK Signalling Controls Remodelling of the Segment Boundary through Cell Reprogramming during Drosophila Morphogenesis", Gettings, […], Almeida & Noselli - PloS Biology - 08.06.2010

[3] Die Morphogenese ist die Etappe der Embryogenese, bei der sich die Formen und Organe herausbilden.

Kontakt:

Stéphane Noselli, CNRS Forscher - Tel: +33 4 92 07 64 33 - E-Mail: noselli@unice.fr

Quelle:

Pressemitteilung des französischen Zentrums für wissenschaftliche Forschung CNRS - 08.06.2010 - http://www2.cnrs.fr/presse/communique/1909.htm

Redakteurin: Léna Prochnow, lena.prochnow@diplomatie.gouv.fr

Wissenschaft-Frankreich (Nummer 186 vom 23.06.2010) Französische Botschaften in Deutschland und Österreich

| Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie