Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiepotenzial bei Biogas aus erneuerbaren Rohstoffen noch lange nicht ausgeschöpft

02.03.2011
Mainzer Wissenschaftler suchen nach Mikroorganismen, um die Vergärung von Biomasse in Biogasanlagen zu optimieren

Die Herstellung von Biogas zur Energiegewinnung kann nach Auffassung von Wissenschaftlern noch deutlich optimiert werden. Gute Chancen dafür sieht Univ.-Prof. Dr. Helmut König, Leiter des Instituts für Mikrobiologie und Weinforschung an der Johannes Gutenberg-Universität Mainz, bei den mikrobiellen Prozessen zur Umwandlung von Biomasse in Methan.

„Bislang erhält man aus der Biomasse Biogas, das zu 50 bis 65 Volumenprozent aus Methan besteht. Die hydraulische Verweilzeit der Biomasse ist mit bis zu 70 Tagen aber noch zu lange und kann sicherlich mit optimierten Mikroorganismen noch wesentlich verbessert werden“, erwartet König. „Außerdem kommt es durch Übersäuerung öfters zu Gärstörungen, bei denen manchmal der gesamte Prozess zum Erliegen kommt. Auch hier suchen wir nach Abhilfe, da methanogene Bakterien unter diesen sauren Bedingungen nicht mehr wachsen können." In Deutschland wird Biogas in Biogasanlagen, die mit erneuerbaren Rohstoffen betrieben werden, meist durch die Vergärung von Mais hergestellt und hauptsächlich zur Erzeugung von Strom und Wärme genutzt oder auch nach Aufreinigung direkt in das Gasnetz eingespeist.

Weil fossile Brennstoffe wie Erdöl und Erdgas in spätestens 40 Jahren knapp werden, müssen alternative Energiequellen künftig einen weit größeren Stellenwert einnehmen und mehr zur Strom- und Wärmegewinnung beitragen als bisher. Der European Renewable Energy Council (EREC) schätzt, dass bis 2040 erneuerbare Energien 50 Prozent des europäischen Energiebedarfes decken werden. In Deutschland laufen derzeit etwa 5800 Biogasanlagen. Sie produzieren gut 10 Prozent des Stroms, der aus erneuerbaren Energien gewonnen wird. Hinzu kommt noch die Heizwärme. Bei der Biogastechnik nimmt Deutschland weltweit einen der vorderen Plätze ein.

Biogas hat gegenüber Energie aus Wind und Sonne den Vorteil, dass es kontinuierlich verfügbar ist und damit zur Deckung der Grundlast beiträgt. Außerdem kann Biomasse oder Biogas gelagert bzw. gespeichert werden, sodass es in Spitzenzeiten abrufbar ist. Biogas kann daher nach Auffassung von Experten eine wichtige Rolle beim Ausgleich der schwankenden Stromproduktion aus Windkraft und Sonnenenergie einnehmen.

Während die Anlagentechnik bei Biogas in den letzten Jahren erhebliche Fortschritte gemacht hat, wurde die Prozessmikrobiologie und die Systematik der beteiligten Mikroorganismen allerdings noch relativ wenig erforscht. Das Institut für Mikrobiologie und Weinforschung arbeitet seit seiner Gründung Ende der 1960er Jahre auf ganz unterschiedlichen Gebieten mit Mikroorganismen wie zum Beispiel Bakterien und Hefen und hat aktuell zwei Forschungsprojekte über mikrobielle Biogasbildung am Laufen, ein weiteres wird demnächst folgen. „Wir untersuchen die Mikroorganismen in Biogasanlagen, identifizieren sie und untersuchen ihre physiologischen Leistungen. Dann gehen wir der Frage nach, ob es Kulturen gibt, die höhere Leistungen im Hinblick auf den Abbau von Pflanzenmaterial und die Biogasproduktion erbringen“, erklärt König. Die Arbeitsgruppe um Helmut König arbeitet dabei mit dem Prüf- und Forschungsinstitut (PFI) in Pirmasens zusammen, das Biogasanlagen in Rheinland-Pfalz betreut und die Verfahrenstechniken optimiert.

Große Hoffnungen setzt die Arbeitsgruppe um König dabei auf die Lignocellulose-abbauende Darmmikrobiota von Termiten, die besonders in den Tropen und auch Subtropen vorkommen und dort innerhalb kürzester Zeit große Holzkonstruktionen und auch Holzhäuser zerstören. „Das Geheimnis der Termiten ist ihre Zusammenarbeit mit Darmbakterien, Hefen und Flagellaten, die Lignocellulosepartikel in nur 24 Stunden abbauen und weltweit für die Produktion von schätzungsweise 100 Millionen Tonnen Methan verantwortlich sind. Termiten sind etwa 150 Millionen Jahre alt und haben in dieser langen Zeitspanne den Prozess des mikrobiellen Lignocelluloseabbaus optimiert. Das wollen wir uns zu Nutze machen.“ Ein Buch über die Mikroorganismen des Termitendarms hat König zusammen mit seinem indischen Kollegen Prof. Ajit Varma im Springer-Verlag veröffentlicht. Die Mainzer Wissenschaftler haben die beteiligten Bakterien und Hefen isoliert und suchen nun mit dem PFI zusammen nach Lösungen, wie Mais oder andere erneuerbare Rohstoffe so zerkleinert werden können, dass sich die kleinen Partikel optimal für den mikrobiellen Lignocelluloseabbau eignen und die Methanherstellung dadurch beschleunigt wird.

„Die mikrobielle Prozessführung der Biogasgewinnung aus erneuerbaren Rohstoffen steht erst am Anfang ihrer Entwicklung“, meint König. Ein weiteres Forschungsfeld, das seine Arbeitsgruppe demnächst in Angriff nehmen wird, ist die mikrobielle Methanisierung neuer Substrate. In Deutschland wird bisher in Biogasanlagen vor allem Mais vergoren. Die Kritik wegen zunehmender Monokulturen und des Entzugs wichtiger Flächen für die Nahrungsmittelproduktion reist jedoch nicht ab – nicht nur in Ländern wie Mexiko, sondern auch in Deutschland. Daher sind Alternativen wie heimischer Grasschnitt von Wiesen interessant. „Die mikrobielle Umsetzung von Gras zu Methan bringt derzeit noch unterschiedliche Probleme mit sich und lässt sich sicherlich durch die Entwicklung geeigneter Verfahren und den Einsatz ausgewählter Mikroorganismen verbessern“, erwartet Mikrobiologieprofessor König. Die Biogas-Arbeiten am Institut für Mikrobiologie und Weinforschung werden von der Stiftung Rheinland-Pfalz für Innovation und der Fachagentur Nachwachsende Rohstoffe (FNR) unterstützt.

Veröffentlichungen:
König H (1993) Methanogens. In: Sahm H (ed) Biotechnology. Biological Fundamentals. Vol. 1, pp. 251-264, VCH Verlagsgesellschaft, Weinheim
König H (2009) Biology of Methanogenic Archaea. In: A Text Book of Molecular Bio-technology. A. K. Chauhan, A. Varma (eds.). I.K. International Publishing House Pvt. Ltd. New Delhi. pp. 915 - 933

König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: Intestinal Microorganisms of Termites and Other Invertebrates (H. König and A. Varma, eds.) Springer Verlag, Heidelberg. pp. 271 - 301

Weitere Informationen:
Univ.-Prof. Dr. Helmut König
Institut für Mikrobiologie und Weinforschung
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-24634; Fax +49 6131 39-22695
E-Mail: hkoenig@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Biologie/Mikrobiologie/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designer-Proteine falten DNA
24.03.2017 | Technische Universität München

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen