Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie nach dem Vorbild der Natur - Ruthenium als Katalysator für die künstliche Wasserspaltung

10.04.2013
Die Photosynthese ist die wichtigste chemische Reaktion auf unserem Planeten. Ohne sie gäbe es keine Sauerstoff-Atmosphäre, das Leben, so wie wir es kennen, wäre nicht möglich. Dabei wandeln Pflanzen die Sonnenenergie durch Wasserspaltung in chemische Energie um und speichern sie in langkettigen Kohlenhydraten.
Diese umweltfreundliche Form der Energiegewinnung beschäftigt Wissenschaftler und Ingenieure schon seit langem, besonders die Suche nach Möglichkeiten, die Wasserspaltung (Photolyse) künstlich nachzubauen. Wasser und Sonnenlicht sind auf der Erde nahezu unbegrenzt vorhanden, eine Energiegewinnung auf der Basis der Wasserspaltung würde langfristig einen Großteil der Energieprobleme lösen. Allerdings braucht man dazu geeignete Stoffe, die die nötigen chemischen Eigenschaften aufweisen und auch noch bezahlbar sind. Jetzt haben Forscher einen Metallkomplex untersucht, der sich zur künstlichen Wasserspaltung eignet.

Vorbild Photosynthese

Die Photosynthese läuft an den Membranen im Inneren der Chloroplasten ab. Die sogenannte Lichtreaktion besteht im Wesentlichen aus zwei Photosystemen. Die Wasserspaltung oder Photolyse ist dabei eng an das Photosystem II gekoppelt.

Um die für die Wasserspaltung nötige Spannung aufzubauen, gibt es den sogenannten „sauerstoffproduzierenden Komplex“ (oxygene-evolving complex, OEC) oder „Kok-Zyklus“. Er besteht im wesentlichen aus einem Mangan-Calcium-Cluster, einem Metallkomplex. Dieser gibt einzelne Elektronen an die durch ein Lichtquant „angeregten“ (oxidierten) Chlorophyllmoleküle ab. Dadurch baut sich im Cluster die nötige Spannung auf, um letztlich zwei Wassermolekülen vier Elektronen zu entziehen, wodurch das Wasser in vier Protonen und ein Sauerstoffmolekül zerfällt:

2H2O + 4 Lichtquanten ? O2 + 4H+ + 4e-

Eine künstliche Alternative: Ruthenium

Dieser Vorgang, der einer der wichtigsten in der Natur ist, wird intensiv erforscht. Gesucht werden geeignete Verbindungen, die in der Lage sind, ein genügend hohes Spannungspotential aufzubauen, so dass sie Wassermoleküle „aufbrechen“ können. Da organische Komponenten durch den hohen oxidativen Stress häufig „repariert“ werden müssten, suchen Wissenschaftler nach anorganischen Alternativen. Von besonderem Interesse sind dabei Moleküle mit Metalloxidzentren, an denen die Reaktion ablaufen kann. Problematisch erwies sich bisher, dass auch die Metalle durch den Kontakt mit Sauerstoff lediglich eine kurze Lebensdauer hatten. Ein interessantes Metall war für die Forscher daher Ruthenium, das sich in verschiedenen Experimenten als relativ stabil erwies.
Ablauf der Reaktionen am Ru4-POM-Molekül (Quelle: Piccinin et al. 2013)

Ruthenium (Ru) ist ein seltenes Edelmetall, das zu den Platinmetallen gerechnet wird. Es kommt in reiner Form vor, meistens aber in Platinerzen zusammen mit anderen Platinmetallen (Iridium, Osmium). Ein häufig vorkommendes Oxid ist Ruthenium-(IV)-Oxid (RuO2). Die Autoren der Studie haben nun ein weiteres Rutheniumoxid, Ru4-Polyoxometallat (Ru4-POM), untersucht. Ru4-POM ist bekannt dafür, dass es die Wasserspaltung effizient katalysieren kann und eine lange Lebensdauer hat. Die Wissenschaftler fanden nun durch Simulationen den grundlegenden Ablauf der Wasserspaltung heraus. Er läuft ähnlich ab wie am natürlichen Mn-Cluster in den Chloroplasten der Pflanzen: Das Molekül wird durch Elektronenabgabe in eine höhere Oxidationsstufe befördert, bis durch die spontane Anlagerung eines weiteren Wassermoleküls eine Hydroperoxo-Gruppe (-OOH*) entsteht, die in O2 und H+ zerfällt:

OOH* + 3H+ +3e- ? O2 +4H+ + 4e-

Die Forscher konnten nachweisen, dass innerhalb des Moleküls die vier Ruthenium-Atome als katalytische Zentren fungieren und mit ihrer Umgebung (dem Wasser) interagieren. Sie hoffen nun, dass die neugewonnen Einsichten in diese grundlegenden Prozesse helfen werden, eine neue Generation von Katalysatoren zur Wasserspaltung zu entwickeln und das teure Ruthenium möglichst durch preiswertere Metalle mit ähnlichen Eigenschaften zu ersetzen.
Quelle

Piccinin, S. et al. (2013): Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex. In: Proceedings of the National Academy of Sciences (PNAS), 11. März 2013, doi:10.1073/pnas.1213486110

Piccinin, S. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8821

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie