Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie nach dem Vorbild der Natur - Ruthenium als Katalysator für die künstliche Wasserspaltung

10.04.2013
Die Photosynthese ist die wichtigste chemische Reaktion auf unserem Planeten. Ohne sie gäbe es keine Sauerstoff-Atmosphäre, das Leben, so wie wir es kennen, wäre nicht möglich. Dabei wandeln Pflanzen die Sonnenenergie durch Wasserspaltung in chemische Energie um und speichern sie in langkettigen Kohlenhydraten.
Diese umweltfreundliche Form der Energiegewinnung beschäftigt Wissenschaftler und Ingenieure schon seit langem, besonders die Suche nach Möglichkeiten, die Wasserspaltung (Photolyse) künstlich nachzubauen. Wasser und Sonnenlicht sind auf der Erde nahezu unbegrenzt vorhanden, eine Energiegewinnung auf der Basis der Wasserspaltung würde langfristig einen Großteil der Energieprobleme lösen. Allerdings braucht man dazu geeignete Stoffe, die die nötigen chemischen Eigenschaften aufweisen und auch noch bezahlbar sind. Jetzt haben Forscher einen Metallkomplex untersucht, der sich zur künstlichen Wasserspaltung eignet.

Vorbild Photosynthese

Die Photosynthese läuft an den Membranen im Inneren der Chloroplasten ab. Die sogenannte Lichtreaktion besteht im Wesentlichen aus zwei Photosystemen. Die Wasserspaltung oder Photolyse ist dabei eng an das Photosystem II gekoppelt.

Um die für die Wasserspaltung nötige Spannung aufzubauen, gibt es den sogenannten „sauerstoffproduzierenden Komplex“ (oxygene-evolving complex, OEC) oder „Kok-Zyklus“. Er besteht im wesentlichen aus einem Mangan-Calcium-Cluster, einem Metallkomplex. Dieser gibt einzelne Elektronen an die durch ein Lichtquant „angeregten“ (oxidierten) Chlorophyllmoleküle ab. Dadurch baut sich im Cluster die nötige Spannung auf, um letztlich zwei Wassermolekülen vier Elektronen zu entziehen, wodurch das Wasser in vier Protonen und ein Sauerstoffmolekül zerfällt:

2H2O + 4 Lichtquanten ? O2 + 4H+ + 4e-

Eine künstliche Alternative: Ruthenium

Dieser Vorgang, der einer der wichtigsten in der Natur ist, wird intensiv erforscht. Gesucht werden geeignete Verbindungen, die in der Lage sind, ein genügend hohes Spannungspotential aufzubauen, so dass sie Wassermoleküle „aufbrechen“ können. Da organische Komponenten durch den hohen oxidativen Stress häufig „repariert“ werden müssten, suchen Wissenschaftler nach anorganischen Alternativen. Von besonderem Interesse sind dabei Moleküle mit Metalloxidzentren, an denen die Reaktion ablaufen kann. Problematisch erwies sich bisher, dass auch die Metalle durch den Kontakt mit Sauerstoff lediglich eine kurze Lebensdauer hatten. Ein interessantes Metall war für die Forscher daher Ruthenium, das sich in verschiedenen Experimenten als relativ stabil erwies.
Ablauf der Reaktionen am Ru4-POM-Molekül (Quelle: Piccinin et al. 2013)

Ruthenium (Ru) ist ein seltenes Edelmetall, das zu den Platinmetallen gerechnet wird. Es kommt in reiner Form vor, meistens aber in Platinerzen zusammen mit anderen Platinmetallen (Iridium, Osmium). Ein häufig vorkommendes Oxid ist Ruthenium-(IV)-Oxid (RuO2). Die Autoren der Studie haben nun ein weiteres Rutheniumoxid, Ru4-Polyoxometallat (Ru4-POM), untersucht. Ru4-POM ist bekannt dafür, dass es die Wasserspaltung effizient katalysieren kann und eine lange Lebensdauer hat. Die Wissenschaftler fanden nun durch Simulationen den grundlegenden Ablauf der Wasserspaltung heraus. Er läuft ähnlich ab wie am natürlichen Mn-Cluster in den Chloroplasten der Pflanzen: Das Molekül wird durch Elektronenabgabe in eine höhere Oxidationsstufe befördert, bis durch die spontane Anlagerung eines weiteren Wassermoleküls eine Hydroperoxo-Gruppe (-OOH*) entsteht, die in O2 und H+ zerfällt:

OOH* + 3H+ +3e- ? O2 +4H+ + 4e-

Die Forscher konnten nachweisen, dass innerhalb des Moleküls die vier Ruthenium-Atome als katalytische Zentren fungieren und mit ihrer Umgebung (dem Wasser) interagieren. Sie hoffen nun, dass die neugewonnen Einsichten in diese grundlegenden Prozesse helfen werden, eine neue Generation von Katalysatoren zur Wasserspaltung zu entwickeln und das teure Ruthenium möglichst durch preiswertere Metalle mit ähnlichen Eigenschaften zu ersetzen.
Quelle

Piccinin, S. et al. (2013): Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex. In: Proceedings of the National Academy of Sciences (PNAS), 11. März 2013, doi:10.1073/pnas.1213486110

Piccinin, S. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8821

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics