Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie nach dem Vorbild der Natur - Ruthenium als Katalysator für die künstliche Wasserspaltung

10.04.2013
Die Photosynthese ist die wichtigste chemische Reaktion auf unserem Planeten. Ohne sie gäbe es keine Sauerstoff-Atmosphäre, das Leben, so wie wir es kennen, wäre nicht möglich. Dabei wandeln Pflanzen die Sonnenenergie durch Wasserspaltung in chemische Energie um und speichern sie in langkettigen Kohlenhydraten.
Diese umweltfreundliche Form der Energiegewinnung beschäftigt Wissenschaftler und Ingenieure schon seit langem, besonders die Suche nach Möglichkeiten, die Wasserspaltung (Photolyse) künstlich nachzubauen. Wasser und Sonnenlicht sind auf der Erde nahezu unbegrenzt vorhanden, eine Energiegewinnung auf der Basis der Wasserspaltung würde langfristig einen Großteil der Energieprobleme lösen. Allerdings braucht man dazu geeignete Stoffe, die die nötigen chemischen Eigenschaften aufweisen und auch noch bezahlbar sind. Jetzt haben Forscher einen Metallkomplex untersucht, der sich zur künstlichen Wasserspaltung eignet.

Vorbild Photosynthese

Die Photosynthese läuft an den Membranen im Inneren der Chloroplasten ab. Die sogenannte Lichtreaktion besteht im Wesentlichen aus zwei Photosystemen. Die Wasserspaltung oder Photolyse ist dabei eng an das Photosystem II gekoppelt.

Um die für die Wasserspaltung nötige Spannung aufzubauen, gibt es den sogenannten „sauerstoffproduzierenden Komplex“ (oxygene-evolving complex, OEC) oder „Kok-Zyklus“. Er besteht im wesentlichen aus einem Mangan-Calcium-Cluster, einem Metallkomplex. Dieser gibt einzelne Elektronen an die durch ein Lichtquant „angeregten“ (oxidierten) Chlorophyllmoleküle ab. Dadurch baut sich im Cluster die nötige Spannung auf, um letztlich zwei Wassermolekülen vier Elektronen zu entziehen, wodurch das Wasser in vier Protonen und ein Sauerstoffmolekül zerfällt:

2H2O + 4 Lichtquanten ? O2 + 4H+ + 4e-

Eine künstliche Alternative: Ruthenium

Dieser Vorgang, der einer der wichtigsten in der Natur ist, wird intensiv erforscht. Gesucht werden geeignete Verbindungen, die in der Lage sind, ein genügend hohes Spannungspotential aufzubauen, so dass sie Wassermoleküle „aufbrechen“ können. Da organische Komponenten durch den hohen oxidativen Stress häufig „repariert“ werden müssten, suchen Wissenschaftler nach anorganischen Alternativen. Von besonderem Interesse sind dabei Moleküle mit Metalloxidzentren, an denen die Reaktion ablaufen kann. Problematisch erwies sich bisher, dass auch die Metalle durch den Kontakt mit Sauerstoff lediglich eine kurze Lebensdauer hatten. Ein interessantes Metall war für die Forscher daher Ruthenium, das sich in verschiedenen Experimenten als relativ stabil erwies.
Ablauf der Reaktionen am Ru4-POM-Molekül (Quelle: Piccinin et al. 2013)

Ruthenium (Ru) ist ein seltenes Edelmetall, das zu den Platinmetallen gerechnet wird. Es kommt in reiner Form vor, meistens aber in Platinerzen zusammen mit anderen Platinmetallen (Iridium, Osmium). Ein häufig vorkommendes Oxid ist Ruthenium-(IV)-Oxid (RuO2). Die Autoren der Studie haben nun ein weiteres Rutheniumoxid, Ru4-Polyoxometallat (Ru4-POM), untersucht. Ru4-POM ist bekannt dafür, dass es die Wasserspaltung effizient katalysieren kann und eine lange Lebensdauer hat. Die Wissenschaftler fanden nun durch Simulationen den grundlegenden Ablauf der Wasserspaltung heraus. Er läuft ähnlich ab wie am natürlichen Mn-Cluster in den Chloroplasten der Pflanzen: Das Molekül wird durch Elektronenabgabe in eine höhere Oxidationsstufe befördert, bis durch die spontane Anlagerung eines weiteren Wassermoleküls eine Hydroperoxo-Gruppe (-OOH*) entsteht, die in O2 und H+ zerfällt:

OOH* + 3H+ +3e- ? O2 +4H+ + 4e-

Die Forscher konnten nachweisen, dass innerhalb des Moleküls die vier Ruthenium-Atome als katalytische Zentren fungieren und mit ihrer Umgebung (dem Wasser) interagieren. Sie hoffen nun, dass die neugewonnen Einsichten in diese grundlegenden Prozesse helfen werden, eine neue Generation von Katalysatoren zur Wasserspaltung zu entwickeln und das teure Ruthenium möglichst durch preiswertere Metalle mit ähnlichen Eigenschaften zu ersetzen.
Quelle

Piccinin, S. et al. (2013): Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex. In: Proceedings of the National Academy of Sciences (PNAS), 11. März 2013, doi:10.1073/pnas.1213486110

Piccinin, S. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8821

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise