Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Werkzeugkasten für den Bau beweglicher DNA-Nanomaschinen

27.03.2015

Wissenschaftler der Technischen Universität München (TUM) stellen in der aktuellen Ausgabe von Science neue DNA-Nanoobjekte vor: einen Roboter mit beweglichen Armen, ein Buch, das sich öffnet und schließt, ein schaltbares Zahnrad und einen Aktuator.

Faszinierende Objekte, doch ihre eigentliche Bedeutung liegt woanders: Sie zeigen einen völlig neuen Ansatz, dreidimensionale DNA-Bausteine zu verbinden und zu konfigurieren: Statt wie bisher Stränge von DNA-Basenpaaren wie einen Reißverschluss zusammenzufügen, klinkt man gegengleiche Formen wie Puzzleteile ineinander.


Nanoroboter mit beweglichen Armen: im Entwurf (oben) und wie die Forscher ihn mit TEM beobachten konnten.

H. Dietz / TUM

Die neue Technik bereitet den Weg für anwendbare Nanomaschinen mit beweglichen Teilen. Außerdem liefert sie einen Werkzeugkasten, mit dem sich die Selbstmontage von DNA-Bausteinen einfacher programmieren lässt.

“DNA Origami”, so die an die japanische Kunst des Papierfaltens angelehnte Bezeichnung seines Forschungsgebiets, bewegt sich laut TUM-Professor Hendrik Dietz mit Riesenschritten in Richtung praktischer Anwendungen. Der Wissenschaftler wurde erst vor ein paar Wochen für seinen Beitrag zu dieser dynamischen Entwicklung mit dem wichtigsten deutschen Forschungspreis, dem Gottfried Wilhelm Leibniz-Preis, ausgezeichnet.

In den letzten Jahren hat Dietz mit seiner Arbeitsgruppe eine ganze Reihe von Meilensteinen hinsichtlich der Anwendbarkeit von DNA-Nanomaschinen erreicht: In seinem Labor entstanden unter anderem synthetische Membrankanäle aus DNA; die Forscher konnten die nötige Zeitspanne für die Selbstmontage der DNA-Bausteine von einer Woche auf einige Stunden verkürzen und Ausbeuten von nahe 100 Prozent realisieren; und ihnen gelang der Nachweis, dass extrem komplexe Strukturen tatsächlich mit der vorab definierten Genauigkeit im Sub-Nanometerbereich realisiert werden können.

All diese Vorstöße nutzen die Methode der DNA-Basenpaarung, um festzulegen, wie sich die in einer Flüssigkeit gelösten, einzelnen DNA-Stränge und Baugruppen mit anderen verbinden würden. Nun präsentieren die Forscher einen neuen “Klebstoff”.

“Wenn man mit DNA-Basenpaaren baut, erhält man stabile Bindungen, die aber schwer wieder zu lösen sind, “erklärt Dietz. “Bisher musste man deshalb dynamische, also bewegliche Strukturen sehr einfach gestalten, um mit möglichst wenig Basenpaaren auszukommen. Diese Beschränkung fällt jetzt weg.“

Um eine größere Auswahl an DNA-Nanomaschinen mit beweglichen Teilen und mit potentiell anwendbaren Fähigkeiten zu ermöglichen, adaptierte das Team zwei weitere Techniken aus dem biomolekularen Werkzeugkasten der Natur: Zum einen die Art und Weise, wie Proteine zueinander komplementäre Formen nutzen, um wie ein Puzzleteil an andere Moleküle anzudocken, und zum anderen ihre Fähigkeit, relativ schwache Kontaktwechselwirkungen auszuformen, die bei Bedarf schnell wieder aufgelöst werden können.

Bio-inspirierte Flexibilität

Für die nun in Science präsentierten Experimente ließen sich Dietz und seine Mitautoren – die Doktoranden Thomas Gerling und Klaus Wagenbauer sowie die Bachelorstudentin Andrea Neuner von der Munich School of Engineering der TUM – von einem Mechanismus inspirieren, mit dem Nukleinsäuremoleküle sich mit schwächeren Wechselwirkungen als mit Basenpaaren aneinander binden.

In der Natur bilden sich solche schwache Bindungen beispielsweise wenn das RNA-basierte Enzym RNaseP ein sogenanntes Transfer-RNA Molekül “erkennt”: Die Moleküle werden dann über ihre komplementären Formen nah genug zueinander geführt – ähnlich einem andockenden Raumschiff – und „klicken“ in einen gebundenen Zustand.

Dietz’ neue Technologie imitiert diese Methode. Beim Bau einer beweglichen DNA-Nanomaschine programmieren die Forscher zunächst die Selbstmontage der dreidimensionalen, zueinander passend geformten Bausteine. Dann lässt sich ein schwacher, im Nahbereich wirkender Bindungsmechanismus – das Stapeln von Nukleinbasen – aktivieren, um diese Einheiten korrekt einzurasten. Mit drei verschiedenen Methoden lassen sich die Form und die Aktion der so erzeugten Objekte steuern.

“Damit steht uns jetzt ein Portfolio von Wechselwirkungen mit klar abgestuften Bindungsstärken zur Verfügung, um mehrere Komponenten präzise in gewünschter Weise relativ zueinander zu positionieren,“ erklärt Dietz. Die Arbeitsgruppe stellte eine Serie von DNA-Objekten her, um einerseits die Möglichkeiten der Technologie aufzuzeigen und andererseits ihre Grenzen auszuloten. Die Erzeugnisse reichen von mikrometergroßen Fäden, die eine Ahnung von technologischen Flagellen – beispielsweise für die Fortbewegung – vermitteln könnten, bis hin zu Nanomaschinen mit beweglichen Teilen.

Anhand transmissionselektronen-mikroskopischer Aufnahmen eines nanoskaligen, der Form eines Menschen nachempfundenen Roboters können die Forscher zum Beispiel belegen, dass die Teile exakt wie vorgesehen zueinander passen. Außerdem zeigen die Bilder wie eine einfache Steuerungsmethode, nämlich die Veränderung der Konzentration positiver Ionen in der Lösung, aktiv zwischen verschiedenen Konfigurationen umschalten kann: Zerlegt oder montiert sowie mit geöffneten oder an der Seite des Roboters ruhenden Armen.

Als besonders robust herausgestellt hat sich eine weitere Methode, um ein DNA-Nanoobjekt zwischen verschiedenen strukturellen Zuständen umzuschalten – indem schlicht die Temperatur angehoben oder abgesenkt wird. In früheren Generationen von Nanoobjekten mussten für dieses Umschalten ein Teil der DNA-Basenpaare gezielt durch Zugabe weiterer DNA Moleküle getrennt und wieder verbunden werden.

Die Systeme nutzten sich durch Verdünnung und durch Seitenreaktionen schon nach ein paar Schaltzyklen ab. Die vorliegende Veröffentlichung beschreibt nun einen scherenartigen Aktuator, der über einen Zeitraum von vier Tagen mehr als tausend temperatur-induzierte Schaltzyklen absolvierte, ohne jegliche Anzeichen von Alterung zu zeigen.

„Das zyklische Aufheizen und Abkühlen wäre ein Weg, um Energie in das System zu bringen,“ ergänzt Dietz. „Wenn es uns jetzt noch gelingt, das temperaturgesteuerte mechanische Auf- und Zuklappen unserer Objekte an einen sich kontinuierlich entwickelnden Prozess anzukoppeln – wie bei einer Ratsche zum Beispiel –, dann sollten wir in der Lage sein, Nanomaschinen zu bauen und sie auch anzutreiben.“

Fast so einfach wie LEGO

Die Erweiterung des Werkzeugkastens der DNA-Nanotechnologie um Komponenten mit komplementären Formen sowie um schwache Bindungen bringt auch an anderer Stelle einen Gewinn an Flexibilität. Die Programmierung der Selbstmontage über die Bildung von Basenpaaren mutet in etwa an wie das Schreiben eines Computerprogramms in Maschinensprache. Man hofft nun, dass der neue Ansatz die Weiterentwicklung von DNA-Origami in Richtung praktischer Anwendbarkeit deutlich vereinfacht – ganz so, wie das Aufkommen höherer Programmiersprachen die Software-Technologie vorangetrieben hat.

Es sei ein bisschen wie das Bauen mit LEGO, meint Dietz: „Man gestaltet die Komponenten komplementär zueinander, und das ist eigentlich schon alles. Der ganze Aufwand, der mit Basenpaar-Sequenzen getrieben werden muss, um die Komponenten zu verbinden, entfällt.“

Diese Arbeiten wurden unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) - durch die Excellence Cluster CIPSM (Center for Integrated Protein Science Munich) und NIM (Nanosystems Initiative Munich), den Sonderforschungsbereich (SFB) 863, das TUM Institute for Advanced Study, die TUM Graduate School of Science and Engineering, und die Munich School of Engineering; den European Research Council (ERC Starting Grant); und die Hans L. Merkle Stiftung.

Publikation:
Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Thomas Gerling, Klaus F. Wagenbauer, Andrea M. Neuner, and Hendrik Dietz. Science, 27 March, 2015. doi/10.1126/science.aaa5372

Kontakt
Prof. Hendrik Dietz
Technische Universität München
TUM Laboratory for Biomolecular Nanotechnology
Tel: +49 (0) 89 289 11615
E-mail: dietz@tum.de
Web: http://bionano.physik.tu-muenchen.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie