Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantenlineal für Biomoleküle

22.08.2017

PhysikerInnen messen physikalische Eigenschaften von Vitaminen

In der Quantenphysik breiten sich unbeobachtete Teilchen wie ausgedehnte Wellen im Raum aus. Dieses Phänomen ist philosophisch spannend und von technologischer Relevanz: Ein Forschungsteam der Universität Wien um Markus Arndt konnte an einer Reihe von Vitaminen zeigen, dass die Kombination von experimenteller Quanteninterferometrie und Quantenchemie erlaubt, Informationen über die optischen und elektronischen Eigenschaften von Biomolekülen zu gewinnen – mittels eines "Quantenlineals". Die Ergebnisse wurden im renommierten Journal "Angewandte Chemie International Edition" publiziert.


Das Experiment hebt hervor, dass natürlich vorkommende Vitamine in spezifischen Quantenzuständen präpariert werden können, die dann die Messung molekularer elektronischer Eigenschaften erleichtern.

Copyright: Christian Knobloch, QNP Group, Fakultät für Physik der Universität Wien

Obwohl Vitamine eine zentrale Rolle in der Biologie spielen, sind ihre physikalischen Eigenschaften in der Gasphase noch wenig untersucht. Lukas Mairhofer, Sandra Eibenberger und KollegInnen in der Forschungsgruppe um Markus Arndt zeigen das Potenzial quantenbasierter Methoden zur Untersuchung von Biomolekülen. Sie erzeugten dafür Molekülstrahlen aus den (Pro)Vitaminen A, E und K1 – also β-Carotin, α-Tocopherol und Phyllochinon.

Diese Moleküle fliegen im Hochvakuum durch eine Anordnung von drei Nanogittern. Das erste Gitter zwingt jedes Molekül durch einen von tausenden Spalten, die nur 110 Nanometer breit sind. Die Einengung der Position des Moleküls sorgt nach Heisenbergs Unschärferelation für eine große Unbestimmtheit seiner Ausbreitungsrichtung – das Molekül wird räumlich "delokalisiert". Der Bewegungszustand jedes einzelnen Moleküls wird so präpariert, dass es prinzipiell nicht mehr möglich ist, seinen Weg durch das Experiment zu verfolgen.

Das zweite Gitter ist der Strahl eines grünen Hochleistungslasers, der von einem Spiegel in sich selbst reflektiert wird. Dadurch bildet sich eine stehende Lichtwelle, bei der sich periodisch Regionen hoher Lichtintensität mit Dunkelheit abwechseln. Jedes Molekül ist am zweiten Gitter schon so weit delokalisiert, dass seine Wellenfunktion mehrere Hell- und Dunkelzonen überstreicht, obwohl diese hundert Mal weiter auseinanderliegen als das Molekül groß ist.

In den Zonen mit mehr und weniger Licht wird das Molekül mehr oder weniger abgelenkt und die ausgedehnte quantenmechanische Wellenfront wird moduliert. Da das Molekül nicht nur einen Pfad nimmt, sondern in einer Überlagerung von möglichen Wegen durch die Apparatur läuft, entsteht ein Interferenzmuster, d.h. eine periodische Verteilung der Wahrscheinlichkeit, das Molekül an einem bestimmten Ort anzutreffen. Dieses wird mit dem dritten Gitter verglichen, das wie das erste aus Silizium-Nitrid gefertigt ist.

Quanten-Lineal für Biomoleküle

Die ultra-feine Struktur des Interferenzmusters wird als eine Art Quantenlineal verwendet, das es erlaubt, winzige Ablenkungen von wenigen Nanometern auszulesen. Die Modulation und Position des Interferenzmusters lässt Schlüsse auf die Wechselwirkung der Biomoleküle mit äußeren Feldern zu. Das gilt für die Wechselwirkung sowohl mit dem beugenden Laserstrahl als auch mit einem kontrollierten elektrischen Feld, welches das molekulare Dichtemuster verschiebt.

Die WissenschafterInnen nutzen das Quantenlineal zur Bestimmung elektronischer und optischer Eigenschaften biologisch relevanter Moleküle der (Pro)Vitamine A, E und K1. Pro-Vitamin A spielt beispielsweise eine wichtige Rolle in der Photosynthese. "Wir haben hiermit ein universelles Werkzeug, das uns hilft, die Eigenschaften von Biomolekülen besser zu vermessen", so der Erstautor der Studie, Lukas Mairhofer.

Vergleich mit Molekülsimulationen

Die experimentellen Ergebnisse wurden mit Berechnungen elektronischer Moleküleigenschaften verglichen. Dafür wurde klassische Moleküldynamik, in der die zeitliche Entwicklung der Molekülstruktur verfolgt wird, mit Dichtefunktionaltheorie kombiniert, in der die elektronischen Eigenschaften berechnet werden. Dieses Vorgehen ergibt eine gute Übereinstimmung von Experiment und Theorie.

Die Kombination von Molekülinterferometrie und Quantenchemie ist somit ein gutes Beispiel für die erfolgreiche Zusammenarbeit an der Schnittstelle zwischen Quantenoptik und Physikalischer Chemie.

Publikation in "Angewandte Chemie International Edition":
Lukas Mairhofer, Sandra Eibenberger, Joseph P. Cotter, Marion Romirer, Armin Shayeghi, und Markus Arndt: "Quantum-assisted metrology of neutral vitamins in the gas-phase", Angew. Chem. Int. Ed. 2017, 56 (2017);
DOI: 10.1002/anie.201704916

Das Projekt wurde gefördert vom
• European Research Council FP 7 Ideas im Adv. Grant: PROBIOTIQUS No 320694
• FWF Doctoral Program Complex Quantum Systems W12-03-N25

Zur animierten Version des Experiments:
http://www.quantumnano.at/popular-science/

Sie können Teile des Experiments auch online selber nachspielen:
http://www.quantumnano.at/popular-science/quantum-games-training/

Wissenschaftliche Kontakte
Dr. Lukas Mairhofer (Erstautor)
Quantennanophysik, VCQ
Fakultät für Physik, Universität Wien
Boltzmanngasse 5, 1090 Wien
M +43 650 4545262
lukas.mairhofer@univie.ac.at
http://www.quantumnano.at

Univ. Prof. Dr. Markus Arndt (Projektleiter)
Quantennanophysik, VCQ
Fakultät für Physik, Universität Wien
Boltzmanngasse 5, 1090 Wien
M +43-664-60277-512 10
markus.arndt@univie.ac.at
http://www.quantumnano.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Weitere Informationen:

https://www.researchgate.net/publication/317502032_Quantum-Assisted_Metrology_of... Publikation in "Angewandte Chemie"

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie