Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein halb-künstliches Blatt ist schneller als die Photosynthese

20.08.2014

Proteine ersetzen Silizium
RUB-Forscher mit „Very Important Paper“

Bochumer Chemiker und Biologen haben gemeinsam eine neue Methode entwickelt, Membranproteinkomplexe der Photosynthese effizient in semiartifizielle Sonnenkollektoren zu integrieren. Der damit erzielte Elektronentransfer übertraf zum ersten Mal deutlich die in der natürlichen Photosynthese beobachteten Raten. Diese Entdeckung eröffnet ganz neue Möglichkeiten für die Konstruktion halb-künstlicher Blätter, die als Photovoltaikanlagen mit ungeahnter Leistung funktionieren könnten.


Während natürliche Blätter Lichtenergie in Biomasse umwandeln, wandeln Sonnenkollektoren sie in elektrischen Strom um. (c) Nicolas Plumeré

Die Forscher um Dr. Nicolas Plumeré, Prof. Dr. Wolfgang Schuhmann und Prof. Dr. Matthias Rögner berichten im Journal Chemistry – a European Journal. Ihre Studie wurde vom Journal zum „Very Important Paper“ gewählt – eine Ehre, die nur fünf Prozent der eingereichten Beiträge zuteil wird.

Photosystem 1, ein widerstandsfähiger und effizienter Photosynthesekomplex

In natürlichen Blättern absorbiert der Membranproteinkomplex Photosystem 1 (PS1) das Sonnenlicht. Dessen Energie dient dann dazu, Kohlendioxid in Biomasse zu verwandeln. Auch Sonnenkollektoren, die meistens aus Halbleitern auf Siliziumbasis bestehen, sammeln das Licht, allerdings um daraus Elektrizität zu gewinnen. Ein Ansatz, um Sonnenkollektoren günstiger und aus erneuerbaren Materialien herzustellen, besteht darin, die Halbleiter durch Membranproteinkomplexe der Photosynthese zu ersetzen. Die Arbeitsgruppe von Prof. Rögner isoliert sehr stabile Photosynthesekomplexe aus thermophilen Cyanobakterien, die in einer heißen Quelle in Japan leben. Der Einbau dieser natürlichen Komponenten in ein künstliches System war jedoch eine große Herausforderung: Die Photosynthesekomplexe bestehen sowohl aus hydrophoben als auch aus hydrophilen Bereichen, welche ihre Handhabung und Fixierung auf Elektroden deutlich erschweren.

Umgebung reagiert auf äußere Reize

Die Teams von Dr. Nicolas Plumeré and Prof. Dr. Wolfgang Schuhmann entwickeln komplexe leitfähige Materialien, die auf äußere Reize reagieren. In diese so genannten Redox-Hydrogele betten die Forscher den Photosynthesekomplex PS1 ein. Durch die Wahl eines geeigneten Hydrogels konnten sie die Umgebung der natürlichen Proteine genau einstellen. Insbesondere lassen sich durch die Anpassung des pH-Werts die hydrophoben beziehungsweise hydrophilen Eigenschaften des Hydrogels kontrollieren und an die Bedürfnisse des Photosynthesekomplexes anpassen. „Diese eigens angefertigte Umgebung bietet dem Proteinkomplex optimale Bedingungen – sogar besser als in natürlichen Blättern“, erklärt Dr. Nicolas Plumeré. Die Forscher ermittelten die höchsten jemals für halb-künstliche Photoelektroden gemessenen Elektronentransferraten, die sogar die der natürlichen Photosynthese um eine Größenordnung übertrafen.

Effizientere und billigere Sonnenkollektoren

„Diese Verbesserung erhöht die Effizienz unseres anfänglichen biophotovoltaischen Konzepts vom Nanowatt- in den Mikrowatt-Bereich”, erläutert Nicolas Plumeré. Zwar werden silikonbasierte Sonnenkollektoren diejenigen mit biologischen Komponenten zunächst weiterhin übertreffen, was ihre Stabilität und Effizienz betrifft. Aber in verschiedenen Anwendungen sind letztere dennoch überlegen. Besonders als Energielieferanten für winzige medizintechnische Werkzeuge wie Sensoren in Kontaktlinsen bieten sie sich an. In fernerer Zukunft könnte das Biophotosystem Ausgangspunkt für die Entwicklung billiger und flexibler Solarzellen für die Anwendung auf unebenen Oberflächen sein.

Förderung

Die Arbeiten der Forscher wurden gefördert durch den Exzellenzcluster RESOLV (EXC 1069), die Deutsche Forschungsgemeinschaft (DFG), das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts Taschentuchlabor (03IS2201F) und durch die COST Action TD1102 PHOTOTECH.

Titelaufnahme

T. Kothe, S. Pöller, F. Zhao, P. Fortgang, M. Rögner, W. Schuhmann, N. Plumeré: Engineered electron transfer chain in Photosystem 1 based photocathodes outperforms electron transfer rates in natural photosynthesis. In: Chemistry - A European Journal, 2014, doi: 10.1002/chem.201402585 (VIP).

Weitere Informationen

Dr. Nicolas Plumeré, Fakultät für Chemie und Biochemie, Zentrum für Elektrochemie, Ruhr-Universität Bochum, Tel: 0234/32-29434, E-Mail: nicolas.plumere@rub.de

Prof. Dr. Wolfgang Schuhmann, Fakultät für Chemie und Biochemie, Lehrstuhl für Analytische Chemie Ruhr-Universität Bochum, Tel. 0234/32-26200, E-Mail: wolfgang.schuhmann@rub.de

Prof. Dr. Matthias Rögner, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, Tel. 0234/32-23634; E-Mail: matthias.roegner@rub.de

Meike Drießen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise