Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein direkter Blick in die „Schaltzentrale“ des Immunsystems

09.02.2015

Unser Immunsystem verfolgt unterschiedliche Strategien, mit denen es Eindringlinge erkennt und andere Zellen über die Gefahr informiert. Alle diese Wege führen über einen gemeinsamen Knotenpunkt in den Immunzellen: das Protein TAP. Dieses Protein wird von vielen Viren ausgeschaltet, um die Abwehrreaktionen des Immunsystems zu unterwandern.

Wissenschaftler des Biozentrums am Institut für Biochemie der Goethe Universität in Frankfurt am Main und des TWINCORE haben nun eine Methode entwickelt, mit der sie die Aktivität von TAP in einzelnen Immunzellen untersuchen können – und haben damit ein neues, zuverlässiges Werkzeug geschaffen, um die TAP- Aktivität zu bestimmen.


Marius Döring am Mikroskop

Die Abkürzung TAP steht für „transporter associated with antigen processing“ und die Aufgabe dieses Proteins ist es, kurze Bruchstücke des Angreifers innerhalb der Immunzellen so zu verarbeiten, dass sie auf der Oberfläche der Immunzellen präsentiert werden.

„TAP ist der entscheidende Schritt zur Präsentation von Informationen über den Erreger einer infizierten Zelle und der Verarbeitung dieser Information durch das Immunsystem“, sagt Hanna Fischbach, Wissenschaftlerin am Biozentrum Frankfurt. Dieser Schritt beeinflusst die Reaktionen unseres Immunsystems auf vielfältige Weise. Marius Döring vom TWINCORE erklärt:

„Die Präsentation von Fremdmolekülen auf der Oberfläche dendritischer Zellen des Immunsystems führt zur Aktivierung spezifischer Immunzellen. So werden z. B. Zellen aktiviert, die ein immunologisches Gedächtnis bilden und bei einem erneuten Kontakt mit dem Erreger sofort einen Angriff starten.“ Diese zentrale Funktion des TAP-Proteins macht es als Angriffspunkt für Eindringlinge so beliebt.

Die Funktion von TAP genauer zu untersuchen, war bislang allerdings sehr aufwendig und für echte Immunzellen praktisch unmöglich. Mit der neuen Methode, die Hanna Fischbach, Marius Döring und Daphne Nikles in enger Kooperation entwickelt haben, gelingt den Wissenschaftlern nun sozusagen der Sprung von der TAP-Theorie in die Test-Praxis.

„Wir können nun mit direkt aus dem Menschen isolierten Zellen arbeiten und durch Fluoreszenzfarbmarkierungen sogar mehrere unterschiedliche Zelltypen gleichzeitig untersuchen“, erklärt Hanna Fischbach. „Durch die Markierung eines speziell für die Verarbeitung durch TAP ausgewählten Proteinbruchstücks, das nur bei intaktem TAP sichtbar ist, können wir die Aktivität dieser Schaltstelle in den Zellsubtypen gleichzeitig messen.“ Stammen die Zellproben von infizierten Patienten, könnte die Leuchtkraft der Zellen den Forschern verraten, in welcher Sorte Immunzellen der Erreger gezielt das TAP-Protein abschaltet.

„Diese Methode ermöglicht die schnelle und zuverlässige Bestimmung der Inhibition von TAP durch Pathogene und ist ein neuer Weg, um mögliche Ansatzpunkte zu identifizieren, das Störmanöver der Erreger gezielt zu unterbinden“, blickt Marius Döring in die Zukunft.

Weitere Informationen:

http://www.twincore.de
http://www.facebook.com/twincore

Dr. Jo Schilling | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics