Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Echtzeitanalyse von Stoffwechselprodukten

01.10.2015

Biologen der ETH Zürich entwickelten eine Methode, dank der sie erstmals Konzentrationsänderungen von mehreren hundert Stoffwechselprodukten gleichzeitig und nahezu in Echtzeit messen können. Die Technik könnte die Suche nach neuen pharmazeutischen Wirkstoffen und die biologische Grundlagenforschung beflügeln.

Genomik, Proteomik, Metabolomik. Wissenschaftler, die sich mit einem Fachgebiet mit der Nachsilbe -omik beschäftigen, analysieren immer die Gesamtheit von irgendetwas. Im Fall der Metabolomik ist dies die Gesamtheit aller Metaboliten – das heisst aller Stoffwechselprodukte – einer Zelle oder eines Organismus.


Schaltkreise des Lebens: ETH-Wissenschaftler können mit einer neuen Methode in einer Minute eine Vielzahl von Metaboliten (rote und grüne Punkte) messen.

Bild: Nicola Zamboni / ETH Zürich

Die Forschungsgruppen von Uwe Sauer, Professor für Systembiologie an der ETH Zürich, und Nicola Zamboni, Gruppenleiter am Institut für Molekulare Systembiologie, gehören zu den führenden auf dem Gebiet. Sie entwickelten nun eine Methode, mit der sie die Konzentration von Hunderten von Stoffwechselprodukten gleichzeitig und nahezu in Echtzeit bestimmen können.

Die Analyse aller Metaboliten auf einen Schlag ist nicht ganz einfach, denn bei den Metaboliten handelt es sich um eine sehr diverse biologische Stoffklasse. «Verschiedene Zucker, Fette, Botenstoffe und Aminosäuren gehören dazu, also komplett unterschiedliche Moleküle. Ihre einzige Gemeinsamkeit ist, dass sie klein sind, jedenfalls im Vergleich zu den in den Zellen massenhaft vorkommenden Proteinen und RNA-Molekülen», erklärt Sauer.

Hochdurchsatz-Metabolomik

Lange Zeit war die gleichzeitige Messung von hunderten Metaboliten in einer Flüssigkeit – beispielsweise in Urin oder Blut – oder in Zellen sehr zeitaufwendig. Meist nutzten Biologen dazu Methoden, bei denen das Substanzengemisch zunächst mittels Chromatografie aufgetrennt und die separierten Inhaltsstoffe anschliessend in einem Massenspektrometer bestimmt wurden.

Vor wenigen Jahren entwickelten Sauer, Zamboni und ihre Kollegen eine Methode, die es ermöglicht, auf die chromatografische Auftrennung zu verzichten. «Wir können nun eine Probe direkt in einem Massenspektrometer analysieren und mit einem von uns entwickelten Computerprogramm aus der grossen unübersichtlichen Datenmenge Informationen zu den Inhaltsstoffen herausfiltern», so ETH-Professor Sauer. Die Bestimmung von 300 bis 800 verschiedenen Metaboliten in einer Probe dauert so nur noch eine Minute. War die Analyse von mehreren Tausend Proben an einem Tag früher Wunschdenken von Wissenschaftlern, so ist dies nun machbar geworden.

Automatisierte dynamische Messungen

«Die Erfolge mit dieser Hochdurchsatz-Messmethose brachten uns auf die Idee der Echtzeit-Messungen», sagt Sauer. Hilfreich sei diese einerseits, weil der Stoffwechsel extrem schnell auf Reizänderungen reagiere: «Wenn man beispielsweise eine in Dunkelheit gehaltene Pflanze mit Licht bescheint, ändern sich die Konzentrationen ihrer Stoffwechselprodukte innert weniger Sekunden.» Andererseits sei der genaue zeitliche Verlauf einer Konzentrationsänderung als Antwort auf neue Reize eine wichtige und aussagekräftige Information in der Biologie.

Die ETH-Wissenschaftler setzten ihre Idee der Echtzeit-Messungen bei Zellen in Kultur um: bei zwei Bakterienarten, einer Hefeart und bei Zellen von Mäusen. Die Forschenden liessen die Zellen direkt neben dem Messgerät in einem Nährmedium wachsen. Ein automatisch gesteuertes Pumpensystem entnahm der Zellkultur alle zehn Sekunden eine winzige Menge, um sie im Gerät zu analysieren.

Bakterien auf Stand-by

Dabei gelang den Forschenden nicht nur der Nachweis, dass solche Online-Messungen im Prinzip mit allen Arten von Zellkulturen möglich sind. Auch gewannen die Wissenschaftler mit der Technik neue Erkenntnisse, wie Bakterien der Art E. coli von einem «Stand-by-Modus» in eine Wachstumsphase wechseln. Sie liessen Bakterien während zwei Stunden hungern, indem sie sie in Nährmedium ohne Zucker hielten. Bakterien wechseln dabei in das «Stand-by-Programm»: Sie stoppen die Produktion der meisten Metaboliten und bauen vorhandene ab, um daraus Energie zum Überleben zu gewinnen. Anschliessend an diese Hungerphase versorgten die Wissenschaftler die Bakterien wieder mit Zucker. Innerhalb einer Minute nahmen die Zellen die Produktion der Metaboliten wieder auf, um zu wachsen und sich zu teilen.

Verblüfft waren die Wissenschaftler allerdings vom Verhalten von 10 der knapp 300 untersuchten Stoffwechselprodukte. Diese verhielten sich anderes als die Mehrheit: ihre Konzentration nahm in der Hungerphase zu und in der Phase der optimalen Versorgung wieder ab. Die Forschenden gehen davon aus, dass dies Schlüssel-Metaboliten sind, welche das extrem schnelle Umschalten des gesamten Stoffwechsels zwischen den beiden Phasen beeinflussen. Bei diesen zehn Metaboliten handelt es sich um acht bestimmte Aminosäuren – Bausteine von Proteinen – und zwei Moleküle, aus denen die Zellen DNA- und RNA-Bausteine herstellen. Sie haben gemein, dass die Zelle besonders viel Energie aufwenden muss, sie herzustellen. «Wir gehen davon aus, dass die Zelle solche wertvollen Bausteine in der Hungerphase nicht abbaut, sondern spart, um möglichst gute Startvoraussetzungen zu haben für die anschliessende Wachstumsphase», so Sauer.

Mit einem systembiologischen Computermodell konnten die Wissenschaftler zeigen, wie die Regulation funktioniert: Die zehn in der Hungerphase aufgesparten Metaboliten verhindern zu Beginn der Wachstumsphase über Rückkoppelungsmechanismen, dass die Zellen mehr von ihnen produzieren. Die Zellen verschwenden somit keine Energie in den aufwendigen Aufbau der zehn Metaboliten und können dadurch ihre Ressourcen ganz in die Synthese der übrigen Moleküle stecken.

Hilfreich bei der Entwicklung von Medikamenten

Sauer macht die neue Echtzeit-Methode derzeit in der Wissenschaftswelt bekannt. «Es ist eine sehr hilfreiche Methode, um sich einen ersten Überblick zu verschaffen, wie Zellen auf einen Reiz von aussen reagieren. Dabei eignet sie sich für die Analyse aller Stoffwechselprozesse, die über einen Zeitraum von einer halben Stunde bis mehreren Stunden ablaufen», sagt der ETH-Professor. Anwendungsgebiete sieht er nicht nur in der biologischen Grundlagenforschung, sondern beispielsweise auch im Screening von potenziellen neuen pharmazeutischen Wirkstoffen. So könnte man damit herausfinden, wie ein Wirkstoff den Stoffwechsel verändert. Auch Sauers Gruppe verwendet die Methode nun für solche Untersuchungen.

Literaturhinweis

Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U: Real-time metabolome profiling of the metabolic switch between starvation and growth, Nature Methods, 14. September 2015, doi: 10.1038/nmeth.3584

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/echtzeitan...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Der Hausschwamm als Chemiker
20.01.2017 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

20.01.2017 | Materialwissenschaften

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit