Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Echtzeitanalyse von Stoffwechselprodukten

01.10.2015

Biologen der ETH Zürich entwickelten eine Methode, dank der sie erstmals Konzentrationsänderungen von mehreren hundert Stoffwechselprodukten gleichzeitig und nahezu in Echtzeit messen können. Die Technik könnte die Suche nach neuen pharmazeutischen Wirkstoffen und die biologische Grundlagenforschung beflügeln.

Genomik, Proteomik, Metabolomik. Wissenschaftler, die sich mit einem Fachgebiet mit der Nachsilbe -omik beschäftigen, analysieren immer die Gesamtheit von irgendetwas. Im Fall der Metabolomik ist dies die Gesamtheit aller Metaboliten – das heisst aller Stoffwechselprodukte – einer Zelle oder eines Organismus.


Schaltkreise des Lebens: ETH-Wissenschaftler können mit einer neuen Methode in einer Minute eine Vielzahl von Metaboliten (rote und grüne Punkte) messen.

Bild: Nicola Zamboni / ETH Zürich

Die Forschungsgruppen von Uwe Sauer, Professor für Systembiologie an der ETH Zürich, und Nicola Zamboni, Gruppenleiter am Institut für Molekulare Systembiologie, gehören zu den führenden auf dem Gebiet. Sie entwickelten nun eine Methode, mit der sie die Konzentration von Hunderten von Stoffwechselprodukten gleichzeitig und nahezu in Echtzeit bestimmen können.

Die Analyse aller Metaboliten auf einen Schlag ist nicht ganz einfach, denn bei den Metaboliten handelt es sich um eine sehr diverse biologische Stoffklasse. «Verschiedene Zucker, Fette, Botenstoffe und Aminosäuren gehören dazu, also komplett unterschiedliche Moleküle. Ihre einzige Gemeinsamkeit ist, dass sie klein sind, jedenfalls im Vergleich zu den in den Zellen massenhaft vorkommenden Proteinen und RNA-Molekülen», erklärt Sauer.

Hochdurchsatz-Metabolomik

Lange Zeit war die gleichzeitige Messung von hunderten Metaboliten in einer Flüssigkeit – beispielsweise in Urin oder Blut – oder in Zellen sehr zeitaufwendig. Meist nutzten Biologen dazu Methoden, bei denen das Substanzengemisch zunächst mittels Chromatografie aufgetrennt und die separierten Inhaltsstoffe anschliessend in einem Massenspektrometer bestimmt wurden.

Vor wenigen Jahren entwickelten Sauer, Zamboni und ihre Kollegen eine Methode, die es ermöglicht, auf die chromatografische Auftrennung zu verzichten. «Wir können nun eine Probe direkt in einem Massenspektrometer analysieren und mit einem von uns entwickelten Computerprogramm aus der grossen unübersichtlichen Datenmenge Informationen zu den Inhaltsstoffen herausfiltern», so ETH-Professor Sauer. Die Bestimmung von 300 bis 800 verschiedenen Metaboliten in einer Probe dauert so nur noch eine Minute. War die Analyse von mehreren Tausend Proben an einem Tag früher Wunschdenken von Wissenschaftlern, so ist dies nun machbar geworden.

Automatisierte dynamische Messungen

«Die Erfolge mit dieser Hochdurchsatz-Messmethose brachten uns auf die Idee der Echtzeit-Messungen», sagt Sauer. Hilfreich sei diese einerseits, weil der Stoffwechsel extrem schnell auf Reizänderungen reagiere: «Wenn man beispielsweise eine in Dunkelheit gehaltene Pflanze mit Licht bescheint, ändern sich die Konzentrationen ihrer Stoffwechselprodukte innert weniger Sekunden.» Andererseits sei der genaue zeitliche Verlauf einer Konzentrationsänderung als Antwort auf neue Reize eine wichtige und aussagekräftige Information in der Biologie.

Die ETH-Wissenschaftler setzten ihre Idee der Echtzeit-Messungen bei Zellen in Kultur um: bei zwei Bakterienarten, einer Hefeart und bei Zellen von Mäusen. Die Forschenden liessen die Zellen direkt neben dem Messgerät in einem Nährmedium wachsen. Ein automatisch gesteuertes Pumpensystem entnahm der Zellkultur alle zehn Sekunden eine winzige Menge, um sie im Gerät zu analysieren.

Bakterien auf Stand-by

Dabei gelang den Forschenden nicht nur der Nachweis, dass solche Online-Messungen im Prinzip mit allen Arten von Zellkulturen möglich sind. Auch gewannen die Wissenschaftler mit der Technik neue Erkenntnisse, wie Bakterien der Art E. coli von einem «Stand-by-Modus» in eine Wachstumsphase wechseln. Sie liessen Bakterien während zwei Stunden hungern, indem sie sie in Nährmedium ohne Zucker hielten. Bakterien wechseln dabei in das «Stand-by-Programm»: Sie stoppen die Produktion der meisten Metaboliten und bauen vorhandene ab, um daraus Energie zum Überleben zu gewinnen. Anschliessend an diese Hungerphase versorgten die Wissenschaftler die Bakterien wieder mit Zucker. Innerhalb einer Minute nahmen die Zellen die Produktion der Metaboliten wieder auf, um zu wachsen und sich zu teilen.

Verblüfft waren die Wissenschaftler allerdings vom Verhalten von 10 der knapp 300 untersuchten Stoffwechselprodukte. Diese verhielten sich anderes als die Mehrheit: ihre Konzentration nahm in der Hungerphase zu und in der Phase der optimalen Versorgung wieder ab. Die Forschenden gehen davon aus, dass dies Schlüssel-Metaboliten sind, welche das extrem schnelle Umschalten des gesamten Stoffwechsels zwischen den beiden Phasen beeinflussen. Bei diesen zehn Metaboliten handelt es sich um acht bestimmte Aminosäuren – Bausteine von Proteinen – und zwei Moleküle, aus denen die Zellen DNA- und RNA-Bausteine herstellen. Sie haben gemein, dass die Zelle besonders viel Energie aufwenden muss, sie herzustellen. «Wir gehen davon aus, dass die Zelle solche wertvollen Bausteine in der Hungerphase nicht abbaut, sondern spart, um möglichst gute Startvoraussetzungen zu haben für die anschliessende Wachstumsphase», so Sauer.

Mit einem systembiologischen Computermodell konnten die Wissenschaftler zeigen, wie die Regulation funktioniert: Die zehn in der Hungerphase aufgesparten Metaboliten verhindern zu Beginn der Wachstumsphase über Rückkoppelungsmechanismen, dass die Zellen mehr von ihnen produzieren. Die Zellen verschwenden somit keine Energie in den aufwendigen Aufbau der zehn Metaboliten und können dadurch ihre Ressourcen ganz in die Synthese der übrigen Moleküle stecken.

Hilfreich bei der Entwicklung von Medikamenten

Sauer macht die neue Echtzeit-Methode derzeit in der Wissenschaftswelt bekannt. «Es ist eine sehr hilfreiche Methode, um sich einen ersten Überblick zu verschaffen, wie Zellen auf einen Reiz von aussen reagieren. Dabei eignet sie sich für die Analyse aller Stoffwechselprozesse, die über einen Zeitraum von einer halben Stunde bis mehreren Stunden ablaufen», sagt der ETH-Professor. Anwendungsgebiete sieht er nicht nur in der biologischen Grundlagenforschung, sondern beispielsweise auch im Screening von potenziellen neuen pharmazeutischen Wirkstoffen. So könnte man damit herausfinden, wie ein Wirkstoff den Stoffwechsel verändert. Auch Sauers Gruppe verwendet die Methode nun für solche Untersuchungen.

Literaturhinweis

Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U: Real-time metabolome profiling of the metabolic switch between starvation and growth, Nature Methods, 14. September 2015, doi: 10.1038/nmeth.3584

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/echtzeitan...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017 | Verfahrenstechnologie

Jenaer Wissenschaftler für Prostatakrebs-Forschung ausgezeichnet

11.12.2017 | Förderungen Preise

Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt

11.12.2017 | Biowissenschaften Chemie