Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Chemiker schaffen Basis für Therapieansatz bei Diabetes und neurodegenerativen Krankheiten

23.03.2015

Lebensmittelchemiker der TU Dresden haben eine bisher unbekannte Funktion des Kreatins entdeckt und damit einen neuen Ansatz für die Behandlung von Folgeschäden bei Diabetes oder Alzheimer gefunden. Kreatin ist eine körpereigene Substanz, die vom Körper selbst gebildet, aber auch durch den Verzehr von Fleisch und Fisch aufgenommen wird. Schon lange ist bekannt, dass sie für die Energiegewinnung in Muskelzellen und im Gehirn verantwortlich ist. Daher setzen viele Sportler in der Ernährung auf Kreatin. Die Wissenschaftler um Prof. Thomas Henle haben nun gezeigt, dass ihm im menschlichen Körper noch eine weitere Funktion als „Schutzmolekül“ gegen den sogenannten Dicarbonylstress zukommt.

Als Dicarbonylstress wird das erhöhte Vorkommen von sogenannten alpha-Oxoaldehyden (1,2-Dicarbonylverbindungen) im Organismus bezeichnet, die aus dem Blutzucker Glucose entstehen. Die Verbindungen sind hochreaktiv und in der Lage, irreversibel an Körperproteine und sogar DNA zu binden.

Ihre Anreicherung im Blut und Gewebe wird für zahlreiche Funktionsstörungen des menschlichen Körpers verantwortlich gemacht. Dazu zählen unter anderem Arteriosklerose oder Schäden an Netzhaut und Nerven bei Diabetes.

1,2-Dicarbonylverbindungen gelten zudem als Toxine bei Nierenfunktionsstörungen. Darüber hinaus wird in aktuellen Studien ihre Bedeutung bei neurodegenerativen Erkrankungen wie Alzheimer oder Parkinson sowie bei neurologischen Störungen wie Schizophrenie untersucht.

Die Entdeckung der Dresdner Wissenschaftler könnte nun die Grundlage für einen neuen Therapieansatz für derartige Erkrankungen sein. Sie wiesen nach, dass Kreatin sehr gut in der Lage ist, im Organismus mit den Dicarbonylen zu reagieren und damit unschädlich zu machen. Das Kreatin fängt die Verbindung ab, bevor sie mit Körperproteinen oder DNA reagieren kann.

Die Lebensmittelchemiker identifizierten ein spezifisches Reaktionsprodukt namens „MG-HCr“, welches aus Kreatin und Methylglyoxal, der reaktivsten Dicarbonylverbindung, gebildet wird. MG-HCr konnte mittels hochempfindlicher Analysenmethoden in Urinproben nachgewiesen werden.

In einer Ernährungsstudie zeigte sich, dass die Verabreichung von reinem Kreatin die Ausscheidung von MG-HCr bereits nach wenigen Tagen deutlich erhöht – ein sicheres Indiz dafür, dass die Verbindung im Körper als „Abfangreagenz“ für die schädlichen Dicarbonylverbindungen wirkt und dem Körper hilft, diese auszuscheiden.

Welche gesundheitliche Bedeutung dies genau hat, muss in weiterführenden Studien geklärt werden. Für verschiedene neuromuskuläre und neurodegenerative Erkrankungen wie Parkinson oder Alzheimer hat Kreatin bereits Erfolge als Zusatztherapeutikum gezeigt. Die Forschungen an der TU Dresden liefern nun möglicherweise die Erklärung dafür. So könnte eine erhöhte Kreatinaufnahme über Fleisch oder Nahrungsergänzungsmittel auch einen positiven Effekt bei Diabeteserkrankungen haben.

Die Forschungsergebnisse wurden jetzt im „Journal of Agricultural and Food Chemistry“ der American Chemical Society veröffentlicht und stehen hier online zur Verfügung: http://pubs.acs.org/doi/abs/10.1021/jf505998z

Informationen für Journalisten
Prof. Thomas Henle
Tel.: 0351 463-34647 bzw. 0172 861 82 67
thomas.henle@chemie.tu-dresden.de

TU Dresden Pressestelle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics