Bei drei geht's los – Würzburger Herzforscher finden biochemischen "Schalter", der Herzen zu groß werden lässt

Ursache der Erkrankung ist das ungebremste Wachstum der Herzmuskelzellen, die Folge eine eingeschränkte Leistungsfähigkeit des Herzens. Zwar kennt man viele Auslöser für die Erkrankung, was aber genau in der kranken Herzmuskelzelle passiert, war bisher nur ansatzweise bekannt. Forscher um Kristina Lorenz und Martin Lohse vom Institut für Pharmakologie und vom Rudolf-Virchow-Zentrum der Universität Würzburg haben nun einen molekularen Hauptschalter für das ungebremste Wachstum der Herzmuskelzellen gefunden und beschreiben ihn in der Fachzeitschrift Nature Medicine (online vorab).

Wenn ein Herz vermehrt belastet wird, durch Sport oder durch erhöhten Blutdruck, dann wächst es. Ganz konkret wachsen die einzelnen Herzmuskelzellen. Auf diese Weise versucht das Herz, auch bei höherer Belastung seine Leistung konstant zu halten. Wenn ein Herz aber zu stark wächst, dann sterben die Herzmuskelzellen ab, das Herz vernarbt und seine Leistungsfähigkeit lässt nach. Die Folge ist die Herzmuskelschwäche, eine Erkrankung, die heute nur schwer zu therapieren und nicht zu heilen ist.

Schon seit längerem kennt man zwei Motoren des Zellwachstums: Die Enzyme ERK 1 und ERK 2 (extrazellulär regulierte Kinasen). Diese Enzyme haben vielfältige Wirkungen, sie beeinflussen zum Beispiel die Zellteilung, Zelltod und die embryonale Entwicklung, und sie führen zu Krebs. Umstritten war ihre Bedeutung im Herzen. Die Würzburger Forscher konnten nun zeigen, dass diese Enzyme maßgeblich auch im Herzen das ungebremste Wachstum verantworten. Das macht sie zu einem wichtigen Ansatzpunkt für das Verständnis und die Therapie der Herzmuskelschwäche. Wie diese Enzyme arbeiten wollten die Forscher ganz genau wissen.

Dazu untersuchten sie die Enzyme in isolierten Herzmuskelzellen, in Mäusen nach Stimulation verschiedener Signalwege und in Herzmuskelgewebe von Patienten mit chronischer Herzschwäche. Bereits bekannt war, wie die ERKs an anderen Stellen des Körpers arbeiten: Sie werden von Hormonen und Wachstumsfaktoren aktiviert, indem sie chemisch veränder werden. Das geschieht, indem an zwei Stellen der ERKs Phosphatgruppen angehängt werden. Diese Stellen sind also die Aktivierungs-Schalter der ERKs. Bei Aktivierung geben die ERKs das Signal dann an nach geschaltete Proteinen weiter. Im Herzen und den isolierten Herzmuskelzellen haben die Forscher diese beiden Aktivierungs-Schalter wiedergefunden.

Im Herzen fanden die Würzburger Forscher aber jetzt noch eine dritte Stelle, der quasi der Hauptschalter für das Zellwachstum ist. Dieser Schalter wird erst umgelegt, also chemisch durch einen Phosphatrest verändert, wenn die beiden anderen Schalter aktiv sind und viele verschiedene krank machende Stimuli wie Bluthochdruck oder Stresshormone auf die ERKs einwirken. Der Impuls gelangt zu den ERKs über so genannte G-Proteine, die bei vielen Signalvorgängen in Zellen eine Rolle spielen. Wird der Schalter einmal umgelegt, so wandern die ERKs in den Zellkern. Dort aktivieren sie mehrere Gene, von denen man bereits weiß, dass sie zu Zellwachstum führen.

Um die Ergebnisse zu überprüfen, haben die Forscher bei Mäusen den dritten Schalter entfernt, also die Bindestelle für einen Phosphatrest. Im Gegensatz zu normalen Mäusen waren die Herzen der veränderten Mäuse gegen Hormone, die sonst Herzwachstum auslösen, und gegen experimentellen Bluthochdruck resistent – die Größe des Herzens blieb unauffällig und die Mäuse wurden, anders als ihre normalen Artgenossen, nicht krank. Umgekehrt fanden die Forscher bei Mäusen, bei denen der dritte Schalter genetisch schon aktiviert war, eine besondere Empfindlichkeit für Belastungen, denen normale Mäuseherzen ohne weiteres gewachsen waren.

„Diesen Mechanismus könnte man sich zu Nutze machen. Eine gezielte Blockade dieses Schalters für das Zellwachstum könnte eine neue Therapie für die chronische Herzschwäche darstellen“, so Martin Lohse. Darüber hinaus fragen sich die Forscher auch, ob andere Wachstumsvorgänge den gleichen Schalter benutzen – bis hin zu Krebserkrankungen. Sie suchen also nach den gleichen Veränderungen der ERK in Tumoren. Diese Suche hat gerade erst begonnen.

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2008) A new type of ERK1/2- autophosphorylation causes cardiac hypertrophy. Nat Med, 10.1038/nm.1893

Kontakt:

Prof. Dr. Martin Lohse, Institut für Pharmakologie und Toxikologie, Rudolf-Virchow-Zentrum
Tel.: 0931-201 401
Email: lohse@toxi.uni-wuerzburg.de
Sonja Jülich, Leiterin Presse- und Öffentlichkeitsarbeit Rudolf-Virchow-Zentrum
Tel.: 0931-201 48714
Mobil: 0174-2118850
Email: sonja.juelich@virchow.uni-wuerzburg.de

Media Contact

Sonja Jülich idw

Weitere Informationen:

http://www.rudolf-virchow-zentrum.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer