Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei drei geht's los - Würzburger Herzforscher finden biochemischen "Schalter", der Herzen zu groß werden lässt

08.12.2008
Die Herzmuskelschwäche ist eine der Haupttodesursachen in den Industrieländern.

Ursache der Erkrankung ist das ungebremste Wachstum der Herzmuskelzellen, die Folge eine eingeschränkte Leistungsfähigkeit des Herzens. Zwar kennt man viele Auslöser für die Erkrankung, was aber genau in der kranken Herzmuskelzelle passiert, war bisher nur ansatzweise bekannt. Forscher um Kristina Lorenz und Martin Lohse vom Institut für Pharmakologie und vom Rudolf-Virchow-Zentrum der Universität Würzburg haben nun einen molekularen Hauptschalter für das ungebremste Wachstum der Herzmuskelzellen gefunden und beschreiben ihn in der Fachzeitschrift Nature Medicine (online vorab).

Wenn ein Herz vermehrt belastet wird, durch Sport oder durch erhöhten Blutdruck, dann wächst es. Ganz konkret wachsen die einzelnen Herzmuskelzellen. Auf diese Weise versucht das Herz, auch bei höherer Belastung seine Leistung konstant zu halten. Wenn ein Herz aber zu stark wächst, dann sterben die Herzmuskelzellen ab, das Herz vernarbt und seine Leistungsfähigkeit lässt nach. Die Folge ist die Herzmuskelschwäche, eine Erkrankung, die heute nur schwer zu therapieren und nicht zu heilen ist.

Schon seit längerem kennt man zwei Motoren des Zellwachstums: Die Enzyme ERK 1 und ERK 2 (extrazellulär regulierte Kinasen). Diese Enzyme haben vielfältige Wirkungen, sie beeinflussen zum Beispiel die Zellteilung, Zelltod und die embryonale Entwicklung, und sie führen zu Krebs. Umstritten war ihre Bedeutung im Herzen. Die Würzburger Forscher konnten nun zeigen, dass diese Enzyme maßgeblich auch im Herzen das ungebremste Wachstum verantworten. Das macht sie zu einem wichtigen Ansatzpunkt für das Verständnis und die Therapie der Herzmuskelschwäche. Wie diese Enzyme arbeiten wollten die Forscher ganz genau wissen.

Dazu untersuchten sie die Enzyme in isolierten Herzmuskelzellen, in Mäusen nach Stimulation verschiedener Signalwege und in Herzmuskelgewebe von Patienten mit chronischer Herzschwäche. Bereits bekannt war, wie die ERKs an anderen Stellen des Körpers arbeiten: Sie werden von Hormonen und Wachstumsfaktoren aktiviert, indem sie chemisch veränder werden. Das geschieht, indem an zwei Stellen der ERKs Phosphatgruppen angehängt werden. Diese Stellen sind also die Aktivierungs-Schalter der ERKs. Bei Aktivierung geben die ERKs das Signal dann an nach geschaltete Proteinen weiter. Im Herzen und den isolierten Herzmuskelzellen haben die Forscher diese beiden Aktivierungs-Schalter wiedergefunden.

Im Herzen fanden die Würzburger Forscher aber jetzt noch eine dritte Stelle, der quasi der Hauptschalter für das Zellwachstum ist. Dieser Schalter wird erst umgelegt, also chemisch durch einen Phosphatrest verändert, wenn die beiden anderen Schalter aktiv sind und viele verschiedene krank machende Stimuli wie Bluthochdruck oder Stresshormone auf die ERKs einwirken. Der Impuls gelangt zu den ERKs über so genannte G-Proteine, die bei vielen Signalvorgängen in Zellen eine Rolle spielen. Wird der Schalter einmal umgelegt, so wandern die ERKs in den Zellkern. Dort aktivieren sie mehrere Gene, von denen man bereits weiß, dass sie zu Zellwachstum führen.

Um die Ergebnisse zu überprüfen, haben die Forscher bei Mäusen den dritten Schalter entfernt, also die Bindestelle für einen Phosphatrest. Im Gegensatz zu normalen Mäusen waren die Herzen der veränderten Mäuse gegen Hormone, die sonst Herzwachstum auslösen, und gegen experimentellen Bluthochdruck resistent - die Größe des Herzens blieb unauffällig und die Mäuse wurden, anders als ihre normalen Artgenossen, nicht krank. Umgekehrt fanden die Forscher bei Mäusen, bei denen der dritte Schalter genetisch schon aktiviert war, eine besondere Empfindlichkeit für Belastungen, denen normale Mäuseherzen ohne weiteres gewachsen waren.

"Diesen Mechanismus könnte man sich zu Nutze machen. Eine gezielte Blockade dieses Schalters für das Zellwachstum könnte eine neue Therapie für die chronische Herzschwäche darstellen", so Martin Lohse. Darüber hinaus fragen sich die Forscher auch, ob andere Wachstumsvorgänge den gleichen Schalter benutzen - bis hin zu Krebserkrankungen. Sie suchen also nach den gleichen Veränderungen der ERK in Tumoren. Diese Suche hat gerade erst begonnen.

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2008) A new type of ERK1/2- autophosphorylation causes cardiac hypertrophy. Nat Med, 10.1038/nm.1893

Kontakt:

Prof. Dr. Martin Lohse, Institut für Pharmakologie und Toxikologie, Rudolf-Virchow-Zentrum
Tel.: 0931-201 401
Email: lohse@toxi.uni-wuerzburg.de
Sonja Jülich, Leiterin Presse- und Öffentlichkeitsarbeit Rudolf-Virchow-Zentrum
Tel.: 0931-201 48714
Mobil: 0174-2118850
Email: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

nachricht Tauben beim Multitasking besser als Menschen
26.09.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie

Eine detaillierte Waldkarte des blauen Planeten

26.09.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index steigt weiter

26.09.2017 | Wirtschaft Finanzen