Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei drei geht's los - Würzburger Herzforscher finden biochemischen "Schalter", der Herzen zu groß werden lässt

08.12.2008
Die Herzmuskelschwäche ist eine der Haupttodesursachen in den Industrieländern.

Ursache der Erkrankung ist das ungebremste Wachstum der Herzmuskelzellen, die Folge eine eingeschränkte Leistungsfähigkeit des Herzens. Zwar kennt man viele Auslöser für die Erkrankung, was aber genau in der kranken Herzmuskelzelle passiert, war bisher nur ansatzweise bekannt. Forscher um Kristina Lorenz und Martin Lohse vom Institut für Pharmakologie und vom Rudolf-Virchow-Zentrum der Universität Würzburg haben nun einen molekularen Hauptschalter für das ungebremste Wachstum der Herzmuskelzellen gefunden und beschreiben ihn in der Fachzeitschrift Nature Medicine (online vorab).

Wenn ein Herz vermehrt belastet wird, durch Sport oder durch erhöhten Blutdruck, dann wächst es. Ganz konkret wachsen die einzelnen Herzmuskelzellen. Auf diese Weise versucht das Herz, auch bei höherer Belastung seine Leistung konstant zu halten. Wenn ein Herz aber zu stark wächst, dann sterben die Herzmuskelzellen ab, das Herz vernarbt und seine Leistungsfähigkeit lässt nach. Die Folge ist die Herzmuskelschwäche, eine Erkrankung, die heute nur schwer zu therapieren und nicht zu heilen ist.

Schon seit längerem kennt man zwei Motoren des Zellwachstums: Die Enzyme ERK 1 und ERK 2 (extrazellulär regulierte Kinasen). Diese Enzyme haben vielfältige Wirkungen, sie beeinflussen zum Beispiel die Zellteilung, Zelltod und die embryonale Entwicklung, und sie führen zu Krebs. Umstritten war ihre Bedeutung im Herzen. Die Würzburger Forscher konnten nun zeigen, dass diese Enzyme maßgeblich auch im Herzen das ungebremste Wachstum verantworten. Das macht sie zu einem wichtigen Ansatzpunkt für das Verständnis und die Therapie der Herzmuskelschwäche. Wie diese Enzyme arbeiten wollten die Forscher ganz genau wissen.

Dazu untersuchten sie die Enzyme in isolierten Herzmuskelzellen, in Mäusen nach Stimulation verschiedener Signalwege und in Herzmuskelgewebe von Patienten mit chronischer Herzschwäche. Bereits bekannt war, wie die ERKs an anderen Stellen des Körpers arbeiten: Sie werden von Hormonen und Wachstumsfaktoren aktiviert, indem sie chemisch veränder werden. Das geschieht, indem an zwei Stellen der ERKs Phosphatgruppen angehängt werden. Diese Stellen sind also die Aktivierungs-Schalter der ERKs. Bei Aktivierung geben die ERKs das Signal dann an nach geschaltete Proteinen weiter. Im Herzen und den isolierten Herzmuskelzellen haben die Forscher diese beiden Aktivierungs-Schalter wiedergefunden.

Im Herzen fanden die Würzburger Forscher aber jetzt noch eine dritte Stelle, der quasi der Hauptschalter für das Zellwachstum ist. Dieser Schalter wird erst umgelegt, also chemisch durch einen Phosphatrest verändert, wenn die beiden anderen Schalter aktiv sind und viele verschiedene krank machende Stimuli wie Bluthochdruck oder Stresshormone auf die ERKs einwirken. Der Impuls gelangt zu den ERKs über so genannte G-Proteine, die bei vielen Signalvorgängen in Zellen eine Rolle spielen. Wird der Schalter einmal umgelegt, so wandern die ERKs in den Zellkern. Dort aktivieren sie mehrere Gene, von denen man bereits weiß, dass sie zu Zellwachstum führen.

Um die Ergebnisse zu überprüfen, haben die Forscher bei Mäusen den dritten Schalter entfernt, also die Bindestelle für einen Phosphatrest. Im Gegensatz zu normalen Mäusen waren die Herzen der veränderten Mäuse gegen Hormone, die sonst Herzwachstum auslösen, und gegen experimentellen Bluthochdruck resistent - die Größe des Herzens blieb unauffällig und die Mäuse wurden, anders als ihre normalen Artgenossen, nicht krank. Umgekehrt fanden die Forscher bei Mäusen, bei denen der dritte Schalter genetisch schon aktiviert war, eine besondere Empfindlichkeit für Belastungen, denen normale Mäuseherzen ohne weiteres gewachsen waren.

"Diesen Mechanismus könnte man sich zu Nutze machen. Eine gezielte Blockade dieses Schalters für das Zellwachstum könnte eine neue Therapie für die chronische Herzschwäche darstellen", so Martin Lohse. Darüber hinaus fragen sich die Forscher auch, ob andere Wachstumsvorgänge den gleichen Schalter benutzen - bis hin zu Krebserkrankungen. Sie suchen also nach den gleichen Veränderungen der ERK in Tumoren. Diese Suche hat gerade erst begonnen.

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2008) A new type of ERK1/2- autophosphorylation causes cardiac hypertrophy. Nat Med, 10.1038/nm.1893

Kontakt:

Prof. Dr. Martin Lohse, Institut für Pharmakologie und Toxikologie, Rudolf-Virchow-Zentrum
Tel.: 0931-201 401
Email: lohse@toxi.uni-wuerzburg.de
Sonja Jülich, Leiterin Presse- und Öffentlichkeitsarbeit Rudolf-Virchow-Zentrum
Tel.: 0931-201 48714
Mobil: 0174-2118850
Email: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften