Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dopamin - ein Stoff mit vielen Botschaften

18.07.2012
Im Insektengehirn sind Dopamin-ausschüttende Nervenzellen sowohl für die Bildung des Vermeidungs- als auch des Belohnungsgedächtnisses entscheidend

Jedes Kind lernt schnell, negative Situationen zu vermeiden und nach positiven zu streben. Doch nicht nur Menschen können sich an positive und negative Sinneseindrücke erinnern; sogar das verhältnismäßig kleine Gehirn von Fruchtfliegen ist dazu in der Lage.


Leckeres Essen wird zu einer unvergesslichen Belohnung, vor allem wenn wir hungrig sind. Das gilt auch für Fruchtfliegen. © Dr. Pavel Masek

Dabei spielen Nervenzellen eine Rolle, die mit den Pilzkörpern im Fruchtfliegengehirn verbunden sind und den Botenstoff Dopamin enthalten. Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried identifizierten vier verschiedene spezifische Typen solcher Nervenzellen. Drei dieser Nervenzelltypen übernehmen verschiedene Funktionen bei der Speicherung negativer Reize, während der vierte es den Fliegen ermöglicht, sich positive Sinneseindrücke zu merken.

Von frühster Kindheit an lernen wir, Schädlichem aus dem Weg zu gehen und Positives zu suchen. Ein Beispiel für Vermeidungsgedächtnis ist der Stich an den Dornen einer Rose, den wir uns dauerhaft merken. Der Geruch von frischem Essen dagegen wird mit dem Sättigungsgefühl positiv verbunden und ist ein Beispiel für Belohnungsgedächtnis.

Hiromu Tanimoto und seine Kollegen vom Max-Planck-Institut für Neurobiologie haben nun bei der Fruchtfliege die wichtigsten Nervenzelltypen, die an aversiven und Belohnungsprozessen beim Lernvorgang beteiligt sind, lokalisiert und identifiziert. Alle vier der entdeckten Nervenzelltypen enthalten den Botenstoff Dopamin und schütten diesen im Pilzkörper des Fliegengehirns aus. „Es ist erstaunlich, dass so ähnliche Nervenzellen, die so eng benachbart sind, so unterschiedliche Aufgaben haben können“, sagt Tanimoto.

In zwei verschiedenen Studien gelang es den Forschern, die Funktionen der einzelnen Nervenzelltypen zu erforschen. Beim Lernen von Vermeidungsstrategien wurde den Fliegen zunächst ein Duftstoff präsentiert und dieser mit einem negativen Reiz, einem Elektroschock gepaart. Daraufhin lernen die Fliegen diesen Duft in Zukunft zu vermeiden.

In den nächsten Experimenten ersetzten die Wissenschaftler die Elektroschocks durch Aktivierung von Gruppen bestimmter Nervenzellen während der Präsentation des Duftstoffes. Sie beobachteten daraufhin, dass allein die vorübergehende Aktivierung dieser Nervenzellen ausreichend ist als Ersatz eines echten Vermeidungsreizes und zur Bildung eines Gedächtnisses führt - sogar dann, wenn keine realen Reize vorhanden sind.

Die Wissenschaftler konnten außerdem zeigen, dass die drei für das Bestrafungsgedächtnis zuständigen Nervenzelltypen unterschiedliche Funktionen bei der Gedächtnisbildung haben. Dabei geht es vor allem um die Stabilität der Erinnerungen. So ist einer der Zelltypen für die langfristige Speicherung der Eindrücke zuständig, und ein zweiter für die mittelfristige. Der dritte wird für eine kurzfristige Speicherung benötigt, wird jedoch für eine lange Speicherung der Eindrücke nicht gebraucht. „Ein stabiles und funktionsfähiges Gedächtnis für den schädlichen Reiz entsteht also nur durch ein enges Zusammenspiel der drei Zelltypen“, so Tanimoto.

Mit der gleichen Methode zeigten die Forscher, dass Düfte auch mit Belohnung verknüpft werden können. Die Fliegen erinnerten sich an den Geruch und strebten, auch ohne erneut dafür belohnt zu werden, zum Ursprungsort des Geruchs. Die Wissenschaftler wiesen nach, dass auch bei diesem Prozess spezifische Dopamin-haltige Neuronen entscheidend beteiligt sind. Da der Botenstoff Dopamin nicht nur bei Fruchtfliegen und anderen Insekten eine wichtige Rolle spielt, sondern auch beim Menschen für Belohnungslernen benötigt wird, spricht dies für einen hochkonservierten Mechanismus.

RWI/HR
Ansprechpartner
Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Telefon: +49 89 8578-3492
Email: hiromut@­neuro.mpg.de
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Telefon: +49 89 8578-3514
Email: merker@­neuro.mpg.de

Originalpublikationen
Chang Liu, Pierre-Yves Plaçais, Nobuhiro Yamagata, Barret D. Pfeiffer, Yoshinori Aso, Anja B. Friedrich, Igor Siwanowicz, Gerald M. Rubin, Thomas Preat, Hiromu Tanimoto
A subset of dopamine neurons signals reward for odour memory in Drosophila
Nature, 18.Juli 2012, DOI: 10.1038/nature11304
Yoshinori Aso, Andrea Herb, Maite Ogueta, Igor Siwanowicz, Thomas Templier, Anja B. Friedrich, Kei Ito, Henrike Scholz und Hiromu Tanimoto
Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability
PLoS Genet 8(7): e1002768. doi:10.1371/journal.pgen.1002768, 12.Juli 2012

Hiromu Tanimoto | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5898570/gedaechtnisentwicklung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik