Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Beobachtung einer katalytischen Reaktion

03.05.2016

Ein internationales Forscherteam beobachtet den Ablauf einer chemischen Reaktion an einer katalytisch wirkenden Metalloberfläche

Es ist ein langersehntes Ziel der Chemie, strukturelle Veränderungen von Molekülen während chemischer Reaktionen nachzuverfolgen und direkt zu beobachten. Aufgrund ihrer kurzen Lebensdauer ist es besonders schwierig, reaktive Zwischenprodukte zu identifizieren und zu charakterisieren.


Identifikation von Reaktanten, Intermediaten, und Produkten einer Reaktionskaskade aus bimolekularer Endiin-Kupplung und Zyklisierung an einer Silberoberfläche mittels Rasterkraftmikroskopie.

Bild: A. Riss/Technische Universität München, adaptiert aus A. Riss et al., Nature Chemistry (2016), DOI: 10.1038/nchem.2506

Durch die Kenntnis ihrer Strukturen können jedoch wertvolle Einblicke in Reaktionsmechanismen gewonnen werden, was sowohl für die chemische Industrie als auch in darüber hinausgehenden Gebieten – Materialwissenschaften, Nanotechnologie, Biologie und Medizin – von großer Bedeutung ist.

Nun hat ein internationales Forscherteam unter der Leitung von Felix R. Fischer, Michael F. Crommie (University of California, Berkeley und Lawrence Berkeley National Laboratory) und Angel Rubio (Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg und Universität des Baskenlandes in San Sebastián) die Bindungsstruktur der Reaktanten, der Intermediate und der Produkte einer komplexen und technologisch relevanten organischen Oberflächenreaktion auf Einzelmolekülniveau abgebildet und entschlüsselt. Die Ergebnisse wurden gestern in der Fachzeitschrift Nature Chemistry veröffentlicht.

Chemische Umwandlungen an der Grenzfläche zwischen fester und flüssiger beziehungsweise fester und gasförmiger Phase von Stoffen bilden das Herzstück von Schlüsselprozessen der Herstellung von Chemikalien in industriellem Maßstab. Der mikroskopische Mechanismus dieser oberflächenkatalysierten organischen Reaktion stellt für die moderne heterogene Katalyse und ihre Anwendung auf großtechnische chemische Verfahren eine große Herausforderung dar.

Konkurrierende Reaktionspfade, die zu einer Vielzahl von reaktiven Zwischenprodukten sowie zu unerwünschten Nebenprodukten führen, erschweren oft die Untersuchung der zugrunde liegenden Reaktionsmechanismen industriell angewandter chemischer Reaktionen, wie beispielsweise der Umwandlung organischer Rohstoffe in komplexe, hochwertige Chemikalien an der Oberfläche eines heterogenen Katalysatorbetts. Die Identifizierung der Struktur kurzlebiger reaktiver Zwischenprodukte gestaltet sich hierbei aufgrund ihrer geringen Konzentration im Reaktionsgemisch besonders schwierig.

In der aktuellen Arbeit wurden die chemischen Strukturen verschiedener Zwischenschritte einer mehrstufigen Reaktionskaskade von Endiin-Molekülen an einer Silberoberfläche mittels Rasterkraftmikroskopie im Nicht-Kontakt-Modus (noncontact atomic force microscopy, nc-AFM) abgebildet. Für diese Messungen wurde die AFM-Spitze mit einem Kohlenmonoxid-Molekül funktionalisiert, um eine besonders hohe Auflösung zu erzielen.

Die Identifizierung der genauen Bindungsstruktur der verschiedenen Intermediate erlaubte die Bestimmung der komplexen Sequenz von Umwandlungen entlang des Reaktionspfades von den Reaktanten über die Zwischenprodukte bis hin zu den Produkten und darüber hinaus die Entschlüsselung des mikroskopischen Mechanismus hinter dem komplizierten dynamischen Verhalten. „Es war eindrucksvoll, die chemische Struktur der reaktiven Zwischenprodukte in diesem komplexen System direkt messen und theoretisch beschreiben zu können“, sagte Felix Fischer, Professor für Chemie an der University of California in Berkeley und einer der führenden Autoren der Studie.

„Dies ist ein großer Schritt für die chemische Synthese“, ergänzte Angel Rubio, ebenfalls einer der führenden Autoren sowie Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg und Professor für Physik an der Universität des Baskenlandes. „Allerdings wollten wir noch einen Schritt weiter gehen und verstehen, warum die Zwischenprodukte an der Oberfläche stabilisiert werden – dies kommt in einem flüssigen Reaktionsmedium nicht vor.“

Eine Kombination aufwendiger, moderner numerischer Berechnungen und klassischer analytischer Methoden, die den Ablauf sequentieller chemischer Reaktionen beschreiben, hat ergeben, dass es nicht ausreicht, die Potentialfläche zu berücksichtigen (d.h. die Energien der Zwischenstufen entlang des Reaktionspfades und die zugehörigen Aktivierungsenergien für eine weitere Umwandlung), sondern dass Energiedissipation zum Substrat und Veränderungen der molekularen Entropie eine kritische Rolle für die Stabilisierung der Zwischenprodukte spielen.

Die Oberfläche – und insbesondere die Wechselwirkung molekularer Radikale mit der Oberfläche – spielt sowohl für die Entropie als auch für die selektive Dissipation eine entscheidende Rolle. Hierdurch werden grundlegende Unterschiede zwischen Reaktionen an Oberflächen und Chemie in der Gasphase oder in Lösung deutlich.

„Die ergiebige Zusammenarbeit zwischen Theorie und Experiment ermöglichte es uns, die mikroskopischen Triebkräfte zu identifizieren, welche die Reaktionskinetik bestimmen“, sagte Alexander Riss, Erstautor der Studie. Dieses fundamentale Verständnis, das durch das Zusammenspiel experimenteller Messungen auf Einzelmolekülniveau und moderner theoretischer Berechnungen auf Hochleistungsrechnern erreicht wurde, stellt einen grundlegenden Meilenstein in der Analyse chemischer Reaktionen dar.

Durch Einzelmolekülmessungen war es in dieser Arbeit möglich, Beschränkungen konventioneller spektroskopischer Verfahren (die über Ensembles verschiedener Moleküle mitteln würden) zu umgehen und so ein atomares Bild der Reaktionsmechanismen, der treibenden Kräfte chemischer Reaktionen, und der Reaktionskinetik darzustellen. Diese neuen Erkenntnisse liefern bisher unerforschte Ansatzpunkte für die Entwicklung und Optimierung heterogener Katalysesysteme, für die Entwicklung neuartiger Syntheseverfahren in der kohlenstoffbasierten Nanotechnologie, sowie für Anwendungen in der Biochemie und den Materialwissenschaften.

Ansprechpartner:
Prof. Angel Rubio
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6550
angel.rubio@mpsd.mpg.de

Originalpublikation:
A. Riss, A. Pérez Paz, S. Wickenburg, H.-Z. Tsai, D. G. de Oteyza, A. J. Bradley, M. M. Ugeda, P. Gorman, H. S. Jung, M. F. Crommie, A. Rubio, and F. R. Fischer, "Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy," Nature Chemistry, Advance Online Publication (May 2, 2016), DOI: 10.1038/nchem.2506

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2506 Originalpublikation
http://www.mpsd.mpg.de/forschung/theo Forschungsgruppe von Prof. Dr. Angel Rubio
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics