Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkte Beobachtung einer katalytischen Reaktion

03.05.2016

Ein internationales Forscherteam beobachtet den Ablauf einer chemischen Reaktion an einer katalytisch wirkenden Metalloberfläche

Es ist ein langersehntes Ziel der Chemie, strukturelle Veränderungen von Molekülen während chemischer Reaktionen nachzuverfolgen und direkt zu beobachten. Aufgrund ihrer kurzen Lebensdauer ist es besonders schwierig, reaktive Zwischenprodukte zu identifizieren und zu charakterisieren.


Identifikation von Reaktanten, Intermediaten, und Produkten einer Reaktionskaskade aus bimolekularer Endiin-Kupplung und Zyklisierung an einer Silberoberfläche mittels Rasterkraftmikroskopie.

Bild: A. Riss/Technische Universität München, adaptiert aus A. Riss et al., Nature Chemistry (2016), DOI: 10.1038/nchem.2506

Durch die Kenntnis ihrer Strukturen können jedoch wertvolle Einblicke in Reaktionsmechanismen gewonnen werden, was sowohl für die chemische Industrie als auch in darüber hinausgehenden Gebieten – Materialwissenschaften, Nanotechnologie, Biologie und Medizin – von großer Bedeutung ist.

Nun hat ein internationales Forscherteam unter der Leitung von Felix R. Fischer, Michael F. Crommie (University of California, Berkeley und Lawrence Berkeley National Laboratory) und Angel Rubio (Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg und Universität des Baskenlandes in San Sebastián) die Bindungsstruktur der Reaktanten, der Intermediate und der Produkte einer komplexen und technologisch relevanten organischen Oberflächenreaktion auf Einzelmolekülniveau abgebildet und entschlüsselt. Die Ergebnisse wurden gestern in der Fachzeitschrift Nature Chemistry veröffentlicht.

Chemische Umwandlungen an der Grenzfläche zwischen fester und flüssiger beziehungsweise fester und gasförmiger Phase von Stoffen bilden das Herzstück von Schlüsselprozessen der Herstellung von Chemikalien in industriellem Maßstab. Der mikroskopische Mechanismus dieser oberflächenkatalysierten organischen Reaktion stellt für die moderne heterogene Katalyse und ihre Anwendung auf großtechnische chemische Verfahren eine große Herausforderung dar.

Konkurrierende Reaktionspfade, die zu einer Vielzahl von reaktiven Zwischenprodukten sowie zu unerwünschten Nebenprodukten führen, erschweren oft die Untersuchung der zugrunde liegenden Reaktionsmechanismen industriell angewandter chemischer Reaktionen, wie beispielsweise der Umwandlung organischer Rohstoffe in komplexe, hochwertige Chemikalien an der Oberfläche eines heterogenen Katalysatorbetts. Die Identifizierung der Struktur kurzlebiger reaktiver Zwischenprodukte gestaltet sich hierbei aufgrund ihrer geringen Konzentration im Reaktionsgemisch besonders schwierig.

In der aktuellen Arbeit wurden die chemischen Strukturen verschiedener Zwischenschritte einer mehrstufigen Reaktionskaskade von Endiin-Molekülen an einer Silberoberfläche mittels Rasterkraftmikroskopie im Nicht-Kontakt-Modus (noncontact atomic force microscopy, nc-AFM) abgebildet. Für diese Messungen wurde die AFM-Spitze mit einem Kohlenmonoxid-Molekül funktionalisiert, um eine besonders hohe Auflösung zu erzielen.

Die Identifizierung der genauen Bindungsstruktur der verschiedenen Intermediate erlaubte die Bestimmung der komplexen Sequenz von Umwandlungen entlang des Reaktionspfades von den Reaktanten über die Zwischenprodukte bis hin zu den Produkten und darüber hinaus die Entschlüsselung des mikroskopischen Mechanismus hinter dem komplizierten dynamischen Verhalten. „Es war eindrucksvoll, die chemische Struktur der reaktiven Zwischenprodukte in diesem komplexen System direkt messen und theoretisch beschreiben zu können“, sagte Felix Fischer, Professor für Chemie an der University of California in Berkeley und einer der führenden Autoren der Studie.

„Dies ist ein großer Schritt für die chemische Synthese“, ergänzte Angel Rubio, ebenfalls einer der führenden Autoren sowie Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg und Professor für Physik an der Universität des Baskenlandes. „Allerdings wollten wir noch einen Schritt weiter gehen und verstehen, warum die Zwischenprodukte an der Oberfläche stabilisiert werden – dies kommt in einem flüssigen Reaktionsmedium nicht vor.“

Eine Kombination aufwendiger, moderner numerischer Berechnungen und klassischer analytischer Methoden, die den Ablauf sequentieller chemischer Reaktionen beschreiben, hat ergeben, dass es nicht ausreicht, die Potentialfläche zu berücksichtigen (d.h. die Energien der Zwischenstufen entlang des Reaktionspfades und die zugehörigen Aktivierungsenergien für eine weitere Umwandlung), sondern dass Energiedissipation zum Substrat und Veränderungen der molekularen Entropie eine kritische Rolle für die Stabilisierung der Zwischenprodukte spielen.

Die Oberfläche – und insbesondere die Wechselwirkung molekularer Radikale mit der Oberfläche – spielt sowohl für die Entropie als auch für die selektive Dissipation eine entscheidende Rolle. Hierdurch werden grundlegende Unterschiede zwischen Reaktionen an Oberflächen und Chemie in der Gasphase oder in Lösung deutlich.

„Die ergiebige Zusammenarbeit zwischen Theorie und Experiment ermöglichte es uns, die mikroskopischen Triebkräfte zu identifizieren, welche die Reaktionskinetik bestimmen“, sagte Alexander Riss, Erstautor der Studie. Dieses fundamentale Verständnis, das durch das Zusammenspiel experimenteller Messungen auf Einzelmolekülniveau und moderner theoretischer Berechnungen auf Hochleistungsrechnern erreicht wurde, stellt einen grundlegenden Meilenstein in der Analyse chemischer Reaktionen dar.

Durch Einzelmolekülmessungen war es in dieser Arbeit möglich, Beschränkungen konventioneller spektroskopischer Verfahren (die über Ensembles verschiedener Moleküle mitteln würden) zu umgehen und so ein atomares Bild der Reaktionsmechanismen, der treibenden Kräfte chemischer Reaktionen, und der Reaktionskinetik darzustellen. Diese neuen Erkenntnisse liefern bisher unerforschte Ansatzpunkte für die Entwicklung und Optimierung heterogener Katalysesysteme, für die Entwicklung neuartiger Syntheseverfahren in der kohlenstoffbasierten Nanotechnologie, sowie für Anwendungen in der Biochemie und den Materialwissenschaften.

Ansprechpartner:
Prof. Angel Rubio
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6550
angel.rubio@mpsd.mpg.de

Originalpublikation:
A. Riss, A. Pérez Paz, S. Wickenburg, H.-Z. Tsai, D. G. de Oteyza, A. J. Bradley, M. M. Ugeda, P. Gorman, H. S. Jung, M. F. Crommie, A. Rubio, and F. R. Fischer, "Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy," Nature Chemistry, Advance Online Publication (May 2, 2016), DOI: 10.1038/nchem.2506

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2506 Originalpublikation
http://www.mpsd.mpg.de/forschung/theo Forschungsgruppe von Prof. Dr. Angel Rubio
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie