Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die süßeste Rechenmaschine der Welt

20.06.2014

Chemiker der Universität Jena lassen fluoreszierende Zuckersensoren „rechnen“

In einem Chemie-Labor an der Friedrich-Schiller-Universität Jena: An einer rechteckigen Kunststoffplatte mit 384 kleinen Vertiefungen arbeitet Prof. Dr. Alexander Schiller. Der Chemiker pipettiert vorsichtig einige Tropfen Zuckerlösung in eine Reihe der winzigen Reaktionsgefäße.


Chemiker der Universität Jena nutzen fluoreszierende Zuckersensoren zum rechnen. Ihren "Zucker-Computer" stellen sie in der aktuellen Ausgabe der „Zeitschrift Angewandte Chemie“ vor.

Foto: Jan-Peter Kasper/FSU

Sobald die Flüssigkeit sich mit dem Inhalt der Gefäße vermischt hat, beginnt es in einigen Vertiefungen grün zu fluoreszieren. Was der Juniorprofessor für Photonische Materialien hier stark vereinfacht per Hand betreibt, könnte man als den „süßesten Computer der Welt“ bezeichnen. Denn: die Zuckermoleküle, mit denen Schiller arbeitet, sind Bestandteil einer chemischen Anordnung zur Informationsverarbeitung.

Wie der Chemiker von der Universität Jena und seine beiden Doktoranden Martin Elstner und Jörg Axthelm soeben in der aktuellen Ausgabe der Zeitschrift „Angewandte Chemie International Edition“ schreiben, haben sie einen molekularen Rechner auf Zuckerbasis entwickelt (DOI: 10.1002/anie.201403769).

„Die binäre Logik, nach der ein konventioneller Computerchip arbeitet, basiert auf einfachen Ja-/Nein-Entscheidungen“, erklärt Prof. Schiller. „Entweder es fließt ein Strom zwischen zwei Punkten eines elektrischen Leiters oder nicht.“ Diese Spannungsunterschiede werden in „0“ und „1“ codiert und lassen sich mittels logischer Gatter – der Booleschen Operatoren wie UND, ODER, NICHT – miteinander verknüpfen. Auf diese Weise sind eine Vielzahl unterschiedlicher Ausgangssignale und komplexer Schaltungen möglich.

Diese logischen Verknüpfungen lassen sich aber auch mit Hilfe von chemischen Substanzen realisieren, wie die Jenaer Chemiker nun gezeigt haben. Für ihren „Zucker-Computer“ nutzen sie mehrere Komponenten: Einen fluoreszierenden Farbstoff und einen sogenannten Fluoreszenzlöscher.

„Liegen beide Komponenten vor, so kann der Farbstoff seine Wirkung nicht entfalten und wir sehen kein Fluoreszenzsignal“, so Schiller. Kommen jedoch Zuckermoleküle ins Spiel, reagiert der Fluoreszenzlöscher mit dem Zucker und verliert so seine Fähigkeit, das Fluoreszenzsignal zu unterdrücken, was den Farbstoff zum Fluoreszieren bringt. Je nachdem ob Farbstoff, Fluoreszenzlöscher und Zucker als Signalgeber vorliegen, resultiert ein Fluoreszenzsignal – „1“ – oder kein Signal – „0“.

„In unserem Rechner verknüpfen wir chemische Reaktionen mit Computeralgorithmen, um komplexe Informationen zu verarbeiten“, sagt Martin Elstner. „Wird ein Fluoreszenzsignal registriert, gibt der Algorithmus vor, was als nächstes in das Reaktionsgefäß pipettiert werden soll.“ Auf diese Weise werden die Signale nicht, wie im Computer in einen Stromfluss, sondern einen Materiefluss übersetzt und verarbeitet.

Dass ihre chemische Rechenplattform funktioniert, haben Schiller und seine Mitarbeiter in der vorliegenden Studie am Beispiel der Rechenaufgabe 10 + 15 demonstriert. „Rund 40 Minuten hat unser Zucker-Computer dafür gebraucht, aber das Ergebnis war richtig“, sagt Prof. Schiller schmunzelnd und stellt klar:

„Unser Ziel ist es nicht, eine chemische Konkurrenz zu gängigen Computerchips zu entwickeln.“ Eher sieht der Chemiker die Einsatzmöglichkeiten der Rechenplattform im Bereich der medizinischen Diagnostik. So sei es beispielsweise denkbar, die chemische Analyse mehrerer Parameter aus Blut- oder Urinproben über die molekularlogische Plattform zu einer finalen Diagnose zu verknüpfen und damit Therapieentscheidungen zu ermöglichen.

Original-Publikation:
Elstner M, Axthelm J, Schiller A. „Sugar-based molecular computing via material implication”, Angewandte Chemie, International Edition 2014, DOI: 10.1002/anie.201403769; Deutsche Version: Elstner M, Axthelm J, Schiller A. „Zucker-basierter molekularer Rechner mit Implikationslogik”, Angewandte Chemie 2014, DOI: 10.1002/ange.201403769.

Kontakt:
Prof. Dr. Alexander Schiller (Jun.-Prof.)
Institut für Anorganische und Analytische Chemie der
Friedrich-Schiller-Universität Jena
Humboldtstraße 8, 07743 Jena
Tel.: 03641 / 948113
E-Mail: alexander.schiller[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics