Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Netzhaut des Auges ändert ihre „Sprache“ mit wechselnder Helligkeit

09.12.2014

Studie der Universität Tübingen zeigt, wie differenziert Sehinformationen ans Gehirn geleitet werden ‒ Erkenntnisse könnten helfen, Kameras wie auch Sehprothesen weiter zu entwickeln

Unser Sehvermögen ist ausgezeichnet: Es funktioniert auch unter extremen Bedingungen, vom Spaziergang unterm Sternenhimmel bis zur Ski-Abfahrt im gleißenden Sonnenlicht ‒ und dies weitaus geschmeidiger und stabiler, als selbst modernste Digitalkameras arbeiten.

Wissenschaftlern war bekannt, dass die ersten Schritte der „Bildverarbeitung“ bereits innerhalb des Auges ablaufen: die Netzhaut enthält nicht nur die lichtempfindlichen Sinneszellen, sondern sie bereitet Informationen auch auf und leitet diese als komplexes Aktivitätsmuster über den Sehnerv an das Gehirn weiter.

Eine Studie zeigt nun, dass dieser Vorgang noch vielschichtiger ist als gedacht: Wissenschaftler des Werner Reichardt Centrums für Integrative Neurowissenschaften (CIN) an der Universität Tübingen und des Tübinger Bernstein Centers for Computational Neuroscience wiesen nach, dass die Aktivitätsmuster, also die „Sprache“ der Netzhaut, grundlegend von der Helligkeit unserer Umgebung abhängen. Ändern sich die Lichtverhältnisse, spricht die Netzhaut eine andere Sprache. Die Studie wurde am 8. Dezember 2014 in der Fachzeitschrift „Nature Neuroscience“ veröffentlicht: DOI 10.1038/nn.3891

„Bisher ging die Wissenschaft davon aus, dass die Netzhaut die gleiche Szene immer in ein bestimmtes Aktivitätsmuster umwandelt“, erklärt Dr. Thomas Münch vom CIN. Wie er und seine Mitarbeiter der Arbeitsgruppe „Retinal Circuits and Optogenetics“ aber feststellten, liefert die Netzhaut von der gleichen Szene jeweils völlig unterschiedliche Informationen ans Gehirn, sobald sich die Helligkeit auch nur leicht verändert.

Beim Betrachter kommt zwar der gleiche Bildausschnitt an ‒ aber die Impulse der Nervenzellen sind grundsätzlich andere. Ein besseres Verständnis dieser Vorgänge könnte dazu beitragen, Digitalkameras und andere technischen Geräte zu verbessern, aber auch Sehprothesen effizienter zu gestalten.

Schon länger ist bekannt, dass die Netzhaut viele Einzelinformationen über das einfallende Bild gleichzeitig an das Gehirn weiterreicht. So geben bestimmte „Informationskanäle“ Aufschluss über Farben, andere Kanäle über die Kanten innerhalb des Bildes, das Verhältnis von Licht und Schatten oder die Bewegungsrichtung von Objekten.

Die Aktivität all dieser Informationskanäle zusammen formt die Sprache, mit der das Auge mit dem Gehirn kommuniziert. Doktorandin Katja Reinhard, die mit ihrer Kollegin Alexandra Tikidji-Hamburyan die Studie maßgeblich durchführte, erklärt die neuen Befunde an einem Beispiel: „Wenn Sie beim Skifahren das Alpenpanorama einmal mit und einmal ohne Sonnenbrille betrachten, dann schicken die verschiedenen Informationskanäle der Netzhaut grundverschiedene Signale ans Gehirn. Die Sprache der Netzhaut hat sich also alleine wegen der Sonnenbrille komplett verändert, obwohl man das gleiche Bild sieht.“

„Die Ergebnisse erfordern ein Umdenken über die Funktion unseres Auges und des Sehsystems insgesamt“, sagt Münch. Sie zeigten, wie komplex unser Sehsystem sei – selbst die ersten Schritte des Sehens in der Netzhaut. Für die Wissenschaftler ergeben sich damit auch neue Fragen: Warum ändert sich die Netzhaut-Sprache überhaupt? Wie kann unser Gehirn trotzdem immer das gleiche Bild erkennen?

Originalpublikation:
Tikidji-Hamburyan A, Reinhard K, Seitter H, Hovhannisyan A, Procyk CA, Allen AE, Schenk M, Lu-cas RJ & Münch TA (2014) „Retinal output changes qualitatively with every change in ambient illu-minance“ Nature Neuroscience doi: 10.1038/nn.3891

Kontakt:
Dr. Thomas Münch
Universität Tübingen
Centrum für Integrative Neurowissenschaften (CIN)
Telefon +49 7071 29-89182
thomas.muench[at]cin.uni-tuebingen.de
www.cin.uni-tuebingen.de/research/muench 

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie