Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die millisekundengenaue Planung des Gehirns

02.04.2014

Bielefelder Forscher zeigen, wie Menschen das Greifen steuern

Was passiert im Gehirn, wenn Menschen nach Objekten greifen? Das war bislang kaum erforscht. Bewegungsneurowissenschaftler der Universität Bielefeld haben jetzt nachgewiesen, wie lange das Gehirn braucht, um eine Präzisionsbewegung zu planen.


Ab wann berechnet das Gehirn, wie sich Hand und Arm bewegen müssen, um Kaffeetassen und andere Objekte, präzise zu positionieren? Das haben Bielefelder Forscher untersucht.

Foto: CITEC/Universität Bielefeld

Die Antwort: Das Gehirn benötigt kaum mehr als eine halbe Sekunde von der Planung der Bewegung bis zu ihrem Abschluss. Die Wissenschaftlerinnen und Wissenschaftler haben ihre Studie am Dienstag (1.4.2014) im Fachmagazin PLOS ONE veröffentlicht.

Das menschliche Greifen wurde den Wissenschaftlern zufolge meist nur vom Verhalten her untersucht: Wie bewegen Menschen ihre Arme und Finger, um ein Objekt zu fassen? Und wie lange brauchen sie durchschnittlich, um Greifbewegungen auszuführen? Was im Gehirn vorgeht, sei bisher nicht untersucht worden, weil angenommen wurde, dass Muskelaktivitäten in den Händen die Messung der Hirnströme verfälschen.

„In unserer Studie haben wir diesen Störfaktor jedoch herausgerechnet“, sagt Dr. Dirk Koester von der Forschungsgruppe Neurokognition und Bewegung – Biomechanik, die am Exzellenzcluster CITEC der Universität Bielefeld beteiligt ist.

20 Personen nahmen an der Studie teil. Sie hatten die Aufgabe, einen Stab zu umfassen, der auf einer drehbaren Scheibe montiert ist, und sollten eines seiner Enden zu einem von acht Zielpunkten am Rand drehen. „Das ist eine offene Greifbewegung, wie wir sie zum Beispiel machen, wenn wir einen Kaffeebecher in die Auto-Becherhalterung stellen“, erklärt Koester. Am Ende einer solchen Bewegung stehe eine Präzisionsanforderung. „Wir umfassen einen Becher, wir bewegen den Arm zur Becherhalterung und dann müssen wir den Becher präzise positionieren, um ihn schließlich loszulassen und in die Halterung gleiten zu lassen“, sagt Koester. Im Experiment war die Präzisionsbewegung das Einstellen des „Zeigers“ auf einen der Zielpunkte.

Das Forschungsteam wollte herausfinden, wann die Vorausplanung für die Präzisionsbewegung anfängt und wie lange sie dauert. „Unsere Messungen zeigen, dass die Vorausplanung 600 Millisekunden vor Bewegungsende anfängt – also etwas mehr als eine halbe Sekunde. Unser Gehirn beschäftigt sich dann noch weitere 200 Millisekunden mit der Greifbewegung, nachdem das Ziel erreicht ist. Diese Zeit braucht es, um zu kontrollieren, ob die Bewegung richtig ausgeführt wurde und ob sie noch korrigiert werden muss“, sagt Professor Dr. Thomas Schack, Leiter der Forschungsgruppe Neurokognition und Bewegung – Biomechanik.

Das neue Bielefelder Untersuchungsverfahren könnte laut Schack zum Beispiel für medizinische Untersuchungen von Parkinson-Patienten genutzt werden. „Auf diese Weise lässt sich zum Beispiel vergleichen, ob das jeweilige Gehirn ähnliche Planungszeiten wie ein gesundes Gehirn benötigt, um Objekte präzise zu bewegen“, sagt Schack. Ergebnisse der Studie kommen auch der Robotikforschung am Exzellenzcluster CITEC zugute. „Wenn man eine optimale Kommunikation zwischen Mensch und Roboter anstrebt, können solche Mechanismen des menschlichen Gehirns technisch nachgebildet werden.“

Mit seiner aktuellen Studie belegt das Forschungsteam, wie sehr Greifbewegungen das Arbeitsgedächtnis beanspruchen. Schon in einer vorangegangenen Untersuchung fanden die Wissenschaftler heraus, dass das Umplanen einer Greifbewegung sowohl das räumliche als auch das verbale Arbeitsgedächtnis beansprucht. „Das bedeutet, dass die Planung aktueller Handlungen entsprechende Ressourcen beansprucht und andere kognitive-motorische Vorgänge beeinflusst“, sagt Schack. Das kann lebensgefährliche Folgen haben. „Wer beim Autofahren nach dem Handy sucht oder nach dem Kaffeebecher greift, könnte in kritischen Verkehrssituationen dann Probleme haben, schnell genug zu reagieren und zum Beispiel auszuweichen.“

Originalveröffentlichung:
Jan Westerholz, Thomas Schack, Christoph Schütz, Dirk Koester: Habitual vs Non-Habitual Manual Actions: An ERP Study on Overt Movement Execution. PLOS ONE, http://dx.doi.org/10.1371/journal.pone.0093116, erschienen am 1. April 2014.

Kontakt:
Dr. Dirk Koester, Universität Bielefeld
Exzellenzcluster Kognitive Interaktionstechnologie (CITEC)
Telefon: 0521 106-2420
E-Mail: dirk.koester@uni-bielefeld.de

Jörg Heeren | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bielefeld.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE