Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Macht des Einzelnen: Hemmende Synapsen beeinflussen Signale im Gehirn mit hoher Präzision

06.08.2015

Informationen werden in unserem Gehirn über Billionen von Synapsen von einer Zelle zur nächsten weitergegeben. Für einen optimalen Datenfluss ist jedoch nicht nur die Übertragung von Informationen wichtig, sondern auch ihre gezielte Hemmung.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung maßgeblich beeinflussen können. Die Studie ergänzt ein wichtiges Puzzleteil zum Verständnis dieser grundlegenden Gehirnfunktion, die auch bei manchen Krankheiten eine Rolle spielt.


Hemmende Nervenzellen (grün) können über einzelne Synapsen die Signalverarbeitung in Zellen der Großhirnrinde (rot) modulieren oder blockieren.

MPI für Neurobiologie / Müllner

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede dieser Zellen ist über mehrere hundert bis tausend Synapsen mit anderen Zellen verbunden. Unser Denken, Handeln und Fühlen, aber auch unsere Organ- und Körperfunktionen werden durch die synaptische Informationsweitergabe gesteuert – in jeder Sekunde sind es viele Billiarden Impulse.

Damit dieser enorme Datenstrom in geregelten Bahnen läuft, gibt es erregende Synapsen, die Informationen zwischen Zellen weitergeben, und hemmende Synapsen, die den Informationsfluss eingrenzen und verändern.

Wie wichtig auch das Unterdrücken unerwünschter Signale ist, zeigt sich unter anderem, wenn die Funktion der hemmenden Synapsen gestört ist: Es kommt zu einer überhöhten Erregung im Gehirn, wie sie zum Beispiel bei Epilepsie zu sehen ist.

Doch auch um zu lernen, oder sich zu erinnern, braucht das Gehirn Nervenzellen, die die Aktivität anderer Nervenzellen regulieren. Die meisten dieser hemmenden Synapsen docken an die Empfangseinheit der Zielzelle an, die Dendriten. Welche Wirkung diese hemmenden Synapsen jedoch genau haben und wie präzise sie agieren, war bislang nicht erforscht.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung in den Dendriten anderer Zellen entscheidend beeinflussen. Die Neurobiologen untersuchten den Einfluss der dendritischen Hemmung auf Nervenzellen im Hippocampus, einem Gehirnbereich, in dem unter anderem Kurzzeit- in Langzeiterinnerungen umgewandelt werden.

Mit einer fein abgestimmten Kombination verschiedener Methoden konnten die Forscher durch das Mikroskop beobachten, wie schon einzelne hemmende Synapsen die Stärke und Ausbreitung eines Signals in der gehemmten Nervenzelle erheblich veränderten. Die Ergebnisse zeigen, dass Nervenzellsignale durch hemmende Synapsen mit einer Präzision von wenigen Millisekunden und Mikrometern in ihrer Amplitude reguliert werden können.

Es war bekannt, dass hemmende Nervenzellen eine sehr grundlegende Funktion im Gehirn erfüllen. "Dass aber bereits einzelne hemmende Synapsen eine wichtige Rolle spielen und eine so präzise Wirkung haben, hat uns richtig fasziniert", erklärt Fiona Müllner, die Erstautorin der gerade erschienenen Studie.

Aufbauend auf ihre Ergebnisse konnten die Wissenschaftler mit Hilfe eines Modells zeigen, wie einzelne hemmende Synapsen sogar die synaptische Plastizität, die Grundlage für Lernen und Gedächtnis, kontrollieren könnten. "Uns interessiert jetzt natürlich ganz besonders, welche Einflüsse eine so präzise Hemmung auf die Speicherung von Information im Nervensystem hat ", fügt Tobias Bonhoeffer hinzu, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Grundlagen der synaptischen Plastizität untersucht.

ORIGINALVERÖFFENTLICHUNG
Fiona Müllner, Corette Wierenga, Tobias Bonhoeffer
Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time
Neuron, 5. August 2015

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Tobias Bonhoeffer
Abteilung "Synapsen – Schaltkreise – Plastizität"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3751
Email: office.bonhoeffer@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/bonhoeffer - Webseite der Abteilung von Prof. Tobias Bonhoeffer am Max-Planck-Institut für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht
18.10.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik