Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Geburt des Partikels

07.09.2016

Ein an der Universität Konstanz entwickeltes Experiment kann den Mechanismus der Partikelbildung ausgehend von gelösten molekularen Bausteinen aufzeigen

Eine der Hauptaufgaben der Chemie ist, die Bildung von Materialien zu kontrollieren beziehungsweise neue Materialien maßzuschneidern. Um die dabei angewandten Synthesen zu optimieren, ist es von grundlegender Bedeutung zu verstehen, wie der Phasenübergang von der Lösung zum Partikel funktioniert.


Experiment, bei dem durch langsame Zugabe verschiedener Lösungen die Reaktion gestartet, kontrolliert und untersucht werden kann.

Im Arbeitsbereich des Chemikers Dr. Denis Gebauer ist es nun im Rahmen einer internationalen Kooperation gelungen, am Beispiel des Eisenoxids, das bedeutende Anwendungen im Bereich der Medizin, Katalyse und Sensorik hat, diese „Geburt“ der Partikel im Detail beobachtbar zu machen.

Die Doktorandin Johanna Scheck hat ein Experiment entwickelt, mit dem die hohe Reaktivität der Eisen(III)-Ionen in den Griff bekommen werden kann, wodurch die einzelnen Stadien bei der Entstehung von Eisenoxidpartikeln analysierbar werden. Die Ergebnisse wurden im Journal of Physical Chemistry Letters vom 18. August 2016 veröffentlicht und von den Editoren in den sogenannten "Spotlights" derselben Ausgabe hervorgehoben.

„Das ist fundamentale physikalische Chemie“, beurteilt Denis Gebauer, Research Fellow am Zukunftskolleg der Universität Konstanz, die Arbeit der Doktorandin Johanna Scheck. Zumal die experimentellen Bemühungen zur Verlangsamung der hohen Reaktivität von Eisen(III) sowie der Umfang der eingesetzten Analytik nicht unerheblich waren. Selbst ein Besuch am ALBA-Synchrotron in der unmittelbaren Nähe von Barcelona gehörte zu den Maßnahmen.

In einem speziellen Beschleunigerring wurde die Größenverteilung und Wechselwirkung von Partikeln in den einzelnen "Geburtsstadien" gemessen. Die entscheidende Modifikation im Vergleich zu früheren Studien besteht in dem stark verlangsamten Ablauf der Mischung, dessen Umsetzung einige Tricks und Kniffe verlangte. Nur einige Hundert Nano-Liter Eisenlösung fließen pro Minute in die Reaktionslösung.

Ein Nanoliter entspricht einem Tausendstel Mikroliter. Zum Vergleich: Ein Regentropfen hat einige Hundert Mikroliter. Damit arbeitet das Konstanzer Experiment mit einer tausendmal kleineren Dosierung pro Minute als vorherige Experimente.

In dem Experiment von Johanna Scheck wurde außerdem noch etwas anders gemacht als in seinen zahlreichen Vorgängern: Die Reihenfolge, in der die Komponenten der Reaktion zugegeben wurden, wurde im Konstanzer Experiment umgedreht. Die Idee dahinter: Anstatt die Reaktion in einer Eisenlösung ablaufen zu lassen, wird die Eisenlösung langsam dem Reaktionsmedium zugefügt und so stark verdünnt. Dadurch lässt sich die Reaktion besser kontrollieren, weil die Stoffmenge an Eisen im Reaktionsgemisch sehr gering ist und so die Reaktion limitiert.

So konnte erreicht werden, dass die Reaktion des Eisen(III)-oxids nicht sofort das System bis zum Stadium eines Partikels durchläuft, sondern dass die einzelnen Stadien der „Geburt“ der Partikel separiert und mit einer Vielzahl von Methoden analysiert werden können.

Dabei konnte die Reihenfolge der grundlegenden chemischen Mechanismen mit dem physikalischen Mechanismus der Phasenseparation in direkte Verbindung gebracht werden. Die Reaktion startet zunächst in einem chemischen Gleichgewicht, das zur Bildung von gelösten, kleinsten Ionen-Zusammenschlüssen – sogenannten Pränukleationsclustern – führt.

Erst eine nachfolgende Reaktion, bei der diese Pränukleationscluster verdichtet werden, ist grundlegend für die eigentliche Phasenseparation. Bei (zu) schnellen Mischvorgängen laufen beide Mechanismen quasi parallel und damit ununterscheidbar ab.

So konnte durch das Experiment eine Diskussion, die seit den 1970er Jahren geführt wird, zumindest für das Eisen(III)-oxid entschieden werden. Es hat sich gezeigt, dass die Reaktion nicht spontan bis hin zum Partikel abläuft, wie weitläufig angenommen wurde. Der Nukleationsmechanismus, der beim ersten Teilprozess des Phasenübergangs wirkt, basiert dabei auf den oben erwähnten Pränukleationsclustern.

Ist der grundlegende Mechanismus dieser „Geburt“ von Partikeln verstanden, stehen ganz neue Möglichkeiten zur Verfügung. „Wir versuchen nun, die Einblicke, die wir in dieser grundlegenden Arbeit gewonnen haben, für das gezielte Design von Materialeigenschaften anzuwenden“, erklärt Denis Gebauer.

Originalpublikation:
Johanna Scheck, Baohu Wu, Markus Drechsler, Rose Rosenberg, Alexander E. S. Van Driessche, Tomasz M. Stawski, and Denis Gebauer. J. Phys. Chem. Lett., 2016, 7 (16), pp 3123–3130.
DOI: 10.1021/acs.jpclett.6b01237
Link zur Originalveröffentlichung: http://dx.doi.org/10.1021/acs.jpclett.6b01237
Link zum Feature in Spotlights: http://dx.doi.org/10.1021/acs.jpclett.6b01782

Faktenübersicht:
Johanna Schecks Stelle wird im Rahmen des internationale Kooperationsprojektes „Materials World Network“ von der Deutschen Forschungsgemeinschaft (DFG) und der National Science Foundation (NSF) gefördert. Das Projekt befasst sich mit den Frühstadien der Partikelbildung. Johanna Scheck ist seit 2013 Doktorandin in der Forschergruppe von Denis Gebauer. Dieser ist ebenfalls seit 2013 Research Fellow am Zukunftskolleg der Universität Konstanz. Die Studie ist eine Kollaboration der Universität Konstanz, des Forschungszentrums Jülich, der Universität Bayreuth, der University of Leeds, des Centre national de la recherche scientifique Grenoble und des Helmholtz-Zentrums Potsdam.

Dr. Denis Gebauer
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Gebauer-Uni-KN-2016.jpg

Johanna Scheck
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Scheck-Uni-KN-2016.jpg

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Mikroliter Partikel Phasenseparation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie