Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Effekte bakterieller Eiskeime

25.04.2016

Bakterien fördern die Bildung von Eiskristallen, indem sie die Ordnung und Dynamik von Wassermolekülen an ihrer Oberfläche verändern.

Der Gefrierpunkt von Wasser ist alles andere als eine eindeutige Sache. Kleine Tröpfchen aus reinstem Wasser etwa erstarren erst bei minus 37 Grad Celsius zu Eis. Damit sich knapp unter Null Grad Celsius bereits Eiskristalle bilden, sind Kristallisationskeime wie etwa Bakterien nötig, die auf ihrer Oberfläche eisbildende Proteine aufweisen.


Eiskristalle: Max-Planck-Forscher haben herausgefunden, dass bestimmte Bakterien den Ordnungszustand und die Dynamik von Wassermolekülen in Wassertröpfchen beeinflussen können.

Grafik und Montage: MPI für Polymerforschung, Foto: R. Eckl

Den molekularen Mechanismus, über den die Proteine Wassermoleküle erstarren lassen, haben nun Forscher der Max-Planck-Institute für Chemie und für Polymerforschung aufgeklärt. Demnach erzeugen die Proteine geordnete Strukturen im Wasser und leiten Wärme ab. Die Erkenntnisse helfen nicht nur, die Bedingungen besser zu verstehen, unter denen Frostschäden an Pflanzen entstehen.

Da die Bakterien auch in der Atmosphäre vorkommen, wo sie ebenfalls die Bildung von Eiskristallen fördern, spielen sie auch eine Rolle bei der Entstehung von Wolken und Niederschlag – einem großen Unsicherheitsfaktor in Wetter- und Klimavorhersagen.

Bei Null Grad Celsius gefriert ein Wassertropfen nie. Bei der Temperatur, die landläufig als Gefrierpunkt bekannt ist, bildet Wasser nur Eis, wenn es in mit größeren Oberflächen Kontakt hat, in denen sich viele und große eisbildende Stellen befinden – etwa in einem Gefäß oder einem See. In Wassertropfen fördern Bakterien gezielt die Eisbildung, und zwar durch bestimmte Proteinmoleküle an ihrer Oberfläche, was bereits seit längerem bekannt ist. Weitgehend unverstanden waren bisher jedoch die molekularen Mechanismen, die dazu führen.

Max-Planck-Forscher haben nun aufgedeckt, was genau an der Bakterienoberfläche zwischen den Wasser- und den Proteinmolekülen geschieht. Ein Team um Tobias Weidner, Leiter einer Forschungsgruppe am Max-Planck-Institut für Polymerforschung und Janine Fröhlich-Nowoisky, die eine Arbeitsgruppe am Max-Planck-Institut für Chemie leitet, zeigen, auf welche Weise eisaktive Bakterien – so der Fachbegriff – den Ordnungszustand und die Dynamik von Wassermolekülen beeinflussen.

Wie die Mainzer Forscher gemeinsam mit amerikanischen Kollegen in der neuesten Ausgabe des Wissenschaftsmagazins Science Advances berichten, erzeugt die Wechselwirkung mit bestimmten Aminosäuresequenzen der Proteinmoleküle im Wasser Bereiche mit erhöhter Ordnung und stärkeren Wasserstoffbrückenbindungen. Zudem nehmen die Proteine Wärmeenergie aus dem Wasser auf und leiten sie weiter in das Bakterium. Dadurch können sich die Wassermoleküle schneller zu einem Eiskristall zusammen lagern.

Eisaktive Bakterien sind für Wissenschaftler aus mehrfacher Sicht von großem Interesse. Zum einen können sie Frostschäden an der Oberfläche von Pflanzen verursachen. Zum anderen können die Bakterien vom Wind in die Luft getragen werden. Dort wirken sie nicht nur als Kristallisations-, sondern auch als Kondensationskeime, sodass sie die Bildung von Schnee und Regen auslösen und so den Wasserkreislauf beeinflussen können.

Die Verbreitung von eisaktiven Bakterien und anderen Bioaerosolpartikeln in der Atmosphäre und ihr Einfluss auf die Bildung von Wolken und Niederschlag ist ein besonders vieldiskutiertes Thema in der aktuellen Klima- und Erdsystemforschung. Erkenntnisse, worauf die eisbildende Wirkung der Bakterien beruht, könnten helfen, ihre Rolle im Klimasystem besser zu verstehen.

Um zu verstehen, wie die Eiskristallbildung durch bakterielle Proteine angeregt wird, konzentrierten sich die Mainzer Forscher auf das eisaktive Bakterium Pseudomonas syringae. Dieses Bakterium löst schon bei minus zwei Grad Celsius die Eisbildung in Wassertropfen aus.

Zum Vergleich: Enthalten Wassertropfen nur Mineralstaub oder Ruß als Kondensationskeime für die Eiskristallbildung, setzt der Gefrierprozess erst ab Temperaturen von etwa minus 15 Grad Celsius ein. In abgetöteter Form wird Pseudomonas syringae deshalb bereits als „Snomax“ kommerziell zur Produktion von Kunstschnee eingesetzt.

Für ihre Untersuchungen setzten die Wissenschaftler die sogenannte Summenfrequenzspektroskopie ein. Diese ermöglicht es, mittels Laserstrahlen gezielt die Wassermoleküle an der Bakterien- beziehungsweise Proteinoberfläche zu untersuchen.

Dank der neuen Ergebnisse scheint es nun möglich, die Eisbildungsmechanismen der Bakterien zu imitieren und im Labor künstlich nachzubauen und so für eine Reihe weiterer Anwendungen nutzbar zu machen. „In Zukunft wäre es nun denkbar, künstliche, nanostrukturierte Oberflächen und Partikel herzustellen, mit deren Hilfe die Bildung von Eis gezielt beeinflusst und kontrolliert werden könnte“, sagt Tobias Weidner.

Angespornt durch die positiven ersten Ergebnisse werden die beiden Max-Planck-Forschergruppen ihre Zusammenarbeit ausweiten. „Wir planen, zum einen die bakteriellen Eisproteine isoliert zu untersuchen. Derzeit finden die Untersuchungen noch an ganzen Bakterienzellen und Zellfragmenten statt. Zum anderen möchten wir die Analysen auf pilzliche Eiskeime erweitern“, erklärt Janine Fröhlich-Nowoisky, deren Arbeitsgruppe auf die Charakterisierung biologischer Eiskeime spezialisiert ist und über eine umfassende Kultursammlung, nicht nur von eisaktiven Bakterien, sondern auch von eisaktiven Pilzen, verfügt.

Presse- und Öffentlichkeitsarbeit | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie