Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Chemie macht‘s!

27.04.2016

In Geräten der Zukunft könnten molekulare Magnete als Computerbits dienen. Damit ließen sich extrem hohe Datendichten erreichen. In der Physik, Chemie und den Materialwissenschaften stehen deshalb die magnetischen Eigenschaften von komplexen Molekülen im Fokus intensiver Forschungsanstrengungen. Denn lassen sich diese genau bestimmen und vorhersagen, wäre ein großer Schritt in Richtung möglicher Anwendungen getan, zum Beispiel für spinbasierte Datenspeicherung. Ein Team von Wissenschaftlern untersuchte die Spin-Wechselwirkungen in molekularen Magneten – und stellte fest, dass diese direkt von chemischen Wechselwirkungen beeinflusst werden.

Die Forscher untersuchten in ihrer Studie eine bestimmte Art von Molekül: PTCDA besteht aus Kohlenstoff-, Wasserstoff- und Sauerstoffatomen, die gemeinsam sieben zusammenhängende Ringe bilden. Das Molekül wird oft als Modellsystem benutzt.


Oben: Rastertunnelmikroskop-Aufnahmen von PTCDA-Gold-Komplexen

Copyright: Forschungszentrum Jülich

"Bindet man an PTCDA ein Goldatom, dann wird das äußere Elektron dieses Atoms in das Molekül übertragen. Dessen Spin bestimmt dann die magnetischen Eigenschaften des ganzen Systems", erklärt Stefan Tautz vom Jülicher Peter Grünberg Institut. "Der Spin dieses Elektrons breitet sich gewissermaßen über das gesamte Molekül aus und macht es damit zu einer besonderen Art von molekularen Magneten."

Solche Metall-Molekül-Komplexe – sogenannte Monomere – werden in Jülich bereits seit einigen Jahren erforscht. In dieser Studie jedoch konzentrierten sich die Wissenschaftler auf Dimere: Molekülverbände aus zwei Monomeren.

Die Eigenschaften solcher Dimere hängen ab von der Ausrichtung der beiden Monomere zueinander. Die Forscher erhielten so eine große Anzahl an unterschiedlichen Kombinationen von zwei molekularen Magneten, deren Spin-Wechselwirkungen sie mit experimentellen und theoretischen Methoden untersuchten.

Feinste Justierungen der magnetischen Eigenschaften

Dafür vermaßen sie mithilfe der Rastertunnelspektroskopie die Reaktion der Dimere, wenn man einzelne Elektronen hinzufügte oder entfernte – mit überraschenden Ergebnissen. Die Struktur der Spektren war nicht, wie erwartet, vom relativen Abstand der Goldatome in den beiden Monomeren abhängig. Dies legte nahe, dass die magnetischen Eigenschaften nicht allein durch quantenmechanische Wechselwirkungen beeinflusst wurden.

Dortmunder Wissenschaftler entwickelten ein quantenphysikalisches Modell, mit dem sich diese Ergebnisse erklären ließen: Die chemische Struktur der Dimere beeinflusst ihre magnetischen Eigenschaften. "Falls zwei PTCDA-Gold-Komplexe nebeneinander liegen, können sich ihre magnetischen Eigenschaften durch die Dimerbildung massiv ändern", erklärt Frithjof Anders von der Technischen Universität Dortmund.

"Entweder stellen sich die Elektronspins parallel ein und erzeugen damit eine Verdoppelung des magnetischen Moments, oder sie stehen anti-parallel und bilden einen nicht-magnetischen Zustand, was zu den überraschenden Ergebnissen führt, die in Jülich gemessen wurden."

Damit lassen sich die komplexen Spin-Wechselwirkungen, die normalerweise aufgrund ihrer quantenmechanischen Natur sehr schwer beeinflussbar sind, über die chemische Wechselwirkung gewissermaßen maßschneidern. Doch mögliche zukünftige Anwendungen in der Spintronik sind nicht der wichtigste Erfolg, den die Wissenschaftler verzeichnen konnten: "Es ist uns hier gelungen, in der sehr komplexen Welt der Spin-Phänomene eine neue Art von Verhalten zu entdecken", erklärt Tautz.

Zwei theoretische Methoden kombiniert

Magnetische Phänomene dieser Art sind außerordentlich schwer theoretisch zu beschreiben und zu berechnen. Deswegen werden oft vereinfachte Modelle angenommen, die dann an die experimentellen Daten angepasst werden. In diesem Fall benutzten die Forscher jedoch sogenannte "ab initio"-Methoden als Ausgangspunkt für ihre Berechnungen. Diese werden ohne die Ergebnisse der entsprechenden Messung durchgeführt.

"Mit Hilfe der ab-initio Elektronenstrukturtheorie lassen sich chemische Bindungen und Details der elektronischen Struktur mit subatomarer Präzision bestimmen", erläutert Michael Rohlfing von der Universität Münster, dessen Arbeitsgruppe die Berechnungen durchführte. In diesen konnten auch die Parameter vollständig bestimmt werden, die die magnetischen Eigenschaften kontrollieren. Diese Ergebnisse ermöglichten dann den Dortmunder Wissenschaftlern, das magnetische Verhalten der verschiedenen Dimer-Konfigurationen auszuwerten – in vollkommener Übereinstimmung mit den in Jülich gemessenen Daten.

Originalveröffentlichung:

T. Esat, B. Lechtenberg, T. Deilmann, C. Wagner, P. Krüger, R. Temirov, M. Rohlfing, F. Anders, F. Tautz, A chemically driven quantum phase transition in a two-molecule Kondo system, Nature Physics, DOI: 10.1038/nphys3737

Bild:
Rastertunnelmikroskop-Aufnahmen: Oben: Geschlossene Schicht von PTCDA-Molekülen, mit mehreren PTCDA-Gold-Monomeren (Gelb). Liegen zwei dieser Monomere nebeneinander, sprechen die Wissenschaftler von einem Dimer. Abhängig von der Position der angelagerten Goldatome im PCTDA und der relativen Ausrichtung der Monomere, können sich 32 Unterarten eines solchen Dimers bilden.
Unten: Vergrößerte Aufnahmen von drei verschiedenen PTCDA-Gold-Dimeren, überlagert mit Bildern der jeweiligen Molekülstruktur.
Copyright: Forschungszentrum Jülich

Ansprechpartner:

Prof. Dr. Stefan Tautz
Forschungszentrum Jülich
Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel.: +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Prof. Dr. Frithjof Anders
Technische Universität Dortmund
Lehrstuhl für Theoretische Physik II
Tel.: +49 231 755-7958
Email: frithjof.anders@tu-dortmund.de

Prof. Dr. Michael Rohlfing
Westfälische Wilhelms-Universität Münster
Institut für Festkörpertheorie
Tel.: +49 251 83-36340
Email: michael.rohlfing@uni-muenster.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: +49 2461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html - Peter Grünberg Institut, Bereich Functional Nanostructures at Surfaces (PGI-3)
http://t2.physik.tu-dortmund.de/cms/de/home/ - Technische Universität Dortmund, Lehrstuhl Theoretische Physik II
https://www.uni-muenster.de/Physik.FT/ - Westfälische Wilhelms-Universität Münster, Institut für Festkörpertheorie

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Berichte zu: Dimere Forschungszentrum Jülich Molekül Monomere spin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics