Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierter Blick auf molekularen Gifttransporter

30.05.2017

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der Zellmembran sitzen molekulare Pumpen, die schädliche Stoffe im Zellinnern erkennen und nach aussen spedieren.


Das Transportprotein ABCG2 (Mitte) ist in die Zellmembran eingebettet. Es erkennt im Zellinnern (unten) über 200 Stoffe und transportiert diese nach aussen (oben).

ETH Zürich / Scott Jackson, Ioannis Manolaridis, Kaspar Locher

Forschende der ETH Zürich und vom Biozentrum der Universität Basel haben nun die dreidimensionale Struktur eines solchen Transportproteins beim Menschen – des Proteins ABCG2 – auf atomarer Ebene aufgeklärt.

Es ist dies die erste solche Struktur für einen menschlichen multispezifischen Arzneistofftransporter (engl. multi-drug transporter), die nun bekannt ist. Die Wissenschaftler veröffentlichten ihre Arbeit in der jüngsten Ausgabe des Fachmagazins Nature.

«Das Protein ABCG2 erkennt und transportiert mindestens 200 bekannte Stoffe», erklärt Kaspar Locher, Professor für Molekulare Membranbiologie an der ETH Zürich und Leiter der Studie. Zu diesen Stoffen gehören Alkaloide – Pflanzeninhaltsstoffe, die wir über die Nahrung aufnehmen –, aber auch körpereigene Stoffe wie Harnsäure oder der Hämoglobin-Abbaustoff Bilirubin.

Aktiv ist das Protein unter anderem in der Darmwand, wo es schädliche Stoffe daran hindert, ins Blut zu gelangen, oder in den Zellen der Blut-Hirn-Schranke, wo es Giftstoffe vom Gehirn fernhält. Bedeutend sind Proteine wie ABCG2 auch in Milchdrüsen und in der Plazenta. Dort sorgen sie dafür, dass Giftstoffe nicht in die Muttermilch gelangen oder in den Blutkreislauf eines ungeborenen Kindes.

Zweischneidiges Schwert

Allerdings hat die Funktion von multispezifischen Arzneistofftransportern eine Kehrseite: Die Proteine pumpen auch gewisse Medikamente aus den Zellen und verhindern so, dass diese im Zellinnern wirken. «Bei der Entwicklung von Medikamenten muss daher immer untersucht werden, ob sie von Transportproteinen wie ABCG2 erkannt werden», sagt Locher.

Medikamente, die oral verabreicht werden, müssen die Darmwand durchdringen, und solche, die im Gehirn wirken sollen, müssen die Blut-Hirn-Schranke passieren. Sie können dies nur, wenn ABCG2 sie nicht erkennt.

Von einigen Krebsmedikamenten (Chemotherapeutika) hingegen ist bekannt, dass ABCG2 sie erkennt. Dies ist gravierend, weil gewisse Tumorzellen in der Lage sind, die Zahl der ABCG2-Proteine in ihrer Zellmembran zu erhöhen. Solchen Zellen pumpen Chemotherapeutika effizient nach aussen – sie sind gegen die Medikamente resistent.

Medikamentenentwicklung mit dem Computer

Dank der nun bekannten Struktur von ABCG2 könnten Wissenschaftler künftig am Computer simulieren, ob das Transportprotein neue Arzneimittel erkennen kann. Ebenfalls mithilfe von Computermodellierungen könnten Forschende bessere Antikörper für die Diagnose medikamentenresistenter Krebszellen entwickeln oder Wirkstoffe, welche das Transportprotein hemmen.

Mit solchen Wirkstoffen könnten bestimmte Resistenzen gegenüber Chemotherapeutika überwunden werden. «Die Beiträge unserer Forschung für die Medizin und insbesondere die Krebsmedizin sind jedoch längerfristig zu sehen. Wir liefern in erster Linie die Grundlage», betont Locher.

ABCG2 ist ein sehr bewegliches Molekül. Es war deshalb schwierig, das Molekül für die Aufklärung seiner atomaren Struktur festzuhalten. Mithilfe von stabilisierenden Antikörpern ist es den Wissenschaftlern jedoch gelungen, das Protein zu immobilisieren.

Die dreidimensionale Struktur bestimmten die ETH-Forschenden in Zusammenarbeit mit Henning Stahlberg, Professor am Biozentrum der Universität Basel, und seiner Gruppe mittels der Kryo-Elektronenmikroskopie.

«Wir haben in der letzten Zeit intensiv daran gearbeitet, unsere Elektronenmikroskope in deren Auflösungsvermögen zu optimieren und gleichzeitig weitgehend zu automatisieren. So haben wir eine unglaublich schnelle Analysepipeline geschaffen», sagt Stahlberg.

Die Kryo-Elektronenmikroskopie ist eine verhältnismässig neue Technologie zur Aufklärung atomarer Molekülstrukturen. «Die Technik hat in der Strukturbiologie eine Revolution ausgelöst», sagt Locher. In Anbetracht dieser Bedeutung wird die ETH Zürich weiter in die Methode investieren und am Mikroskopiezentrum ScopeM ein zweites hochauflösendes Kryo-Elektronenmikroskop anschaffen. Es wird allen Wissenschaftlern der Life Sciences zur Verfügung stehen, um Moleküle und Strukturen mit atomarer Auflösung zu untersuchen.

Die Studie wurde finanziert vom Nationalen Forschungsschwerpunkt (NFS) Transcure [http://www.nccr-transcure.ch].

Literaturhinweis

Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP: Structure of the human multidrug transporter ABCG2. Nature, 29. Mai 2017, doi: 10.1038/nature22345 [http://dx.doi.org/10.1038/nature22345]

Hochschulkommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte