Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Denken zusehen: Mechanismen des assoziativen Lernens weiter entschlüsselt

25.03.2015

Das Gehirn speichert Informationen nicht an einem bestimmten Ort, sondern als Fragmente an vielen Orten. Zum Denken und Lernen verknüpft es sie wieder.

Wie diese Netzwerkarbeit die plastischen Verbindungen zwischen den Nervenzellen – den Dornfortsätzen – verändert, zeigt eine aktuelle Publikation Tübinger Hirnforscher im Journal of Neuroscience. Mitt els der Zwei-Photonenmikroskopie konnten die Forscher einzelne Dornfortsätze im lernenden Gehirn von Mäusen beobachten: Je länger der Lernprozess voranschritt und je besser die individuelle Lernleistung war, desto stärker wurden die Dornfortsätze abgebaut.


Ein Dornfortsatz (ca. 1 Mikrometer im Durchmesser) einer Großhirnnervenzelle einer lernenden Maus wird abgebaut. Zwei Bilder an zwei verschiedenen Tagen (roter Pfeil: fehlender Dornfortsatz).

Hertie-Institut für klinische Hirnforschung (HIH)

Die Erkenntnisse der Studie tragen auch zu einem besseren Verständnis von Hirnerkrankungen wie Alzheimer, Parkinson und Schizophrenie bei.

Obwohl das Gehirn bei weitem nicht die Schnelligkeit eines Computers erreicht, übertrifft es diesen in seiner Lernfähigkeit und seinem Erinnerungsvermögen. Grundlage dafür ist die flexible Vernetzung von über 100 Milliarden Nervenzellen. Eine wichtige Rolle spielen dabei Dornfortsätze, auch „dendritische Spines“ genannt. Diese feinsten Nervenzellausläufer werden beim Lernen und Erinnern stetig umgebaut. Die Veränderbarkeit neuronaler Signalübertragung ist eine der herausragenden Eigenschaften des Gehirns und wird von Neurowissenschaftlern als zelluläre Grundlage für das menschliche Gedächtnis angesehen.

Dies ist besonders einleuchtend, wenn man assoziatives Gedächtnis verstehen möchte. Dabei gilt es, Informationen, die auf den ersten Blick nichts miteinander zu tun haben, aufzunehmen, zu verknüpfen und als sinnvollen Zusammenhang zu speichern. Solche Verknüpfungen (oder Assoziationen) liegen auch den komplexesten Denkvorgängen zugrunde.

„Nur wenn die beiden höchst unterschiedlichen Signale miteinander verknüpft werden, erfolgt ein Umbau an den Kontaktstellen der miteinander kommunizierenden Nervenzellen. Kurz gesagt: "Wir haben dann etwas gelernt“, erklärt Professor Cornelius Schwarz vom Hertie-Institut für klinische Hirnforschung und dem Werner Reichhardt Centrum für Integrative Neurowissenschaften der Universität Tübingen.

Damit die Forscher dem Gehirn der Mäuse beim Lernen zusehen konnten, trainierten sie diese auf eine einfache Lernaufgabe: Der Assoziation eines Berührungsreizes an ihren Tasthaaren mit einem darauffolgenden kleinen Luftstoß gegen die Augen. „Das Tasthaarsystem der Nager ist hierfür von herausragender Bedeutung, da die sensorischen Eingänge jedes einzelnen Tasthaars an einem sehr kleinen, aber gut bekannten Ort auf der Großhirnoberfläche verarbeitet werden“, sagt Schwarz.

Während die Tiere lernten, ihre Augen nach der Tasthaarberührung zu schließen, um den Luftstoß aufs offene Auge zu vermeiden, haben die Hirnforscher starke Umbauvorgänge der Dornfortsätze beobachtet. Es wurden im Mittel 15 Prozent der Dornfortsätze abgebaut, je länger der Lernprozess voranschritt und je besser war die individuelle Lernleistung der Maus. Ein Hinweis auf die hohe räumliche Präzision der Assoziationsprozesse ist es, dass der Dornfortsatzumbau nur an dem Punkt der Großhirnoberfläche stattfand, wo der sensorische Eingang des fraglichen Tasthaares war.

„Die beobachteten, hochspezifischen Eigenschaften des Dornfortsatzumbaus und die große zeitliche Korrelation mit dem Lernerfolg geben großen Anlass zur Hoffnung, dass der damit verbundene Netzwerkumbau kausal für die langfristige Speicherung des Lerninhalts verantwortlich ist“, so Schwarz über die Ergebnisse der Studie. Mit diesen Beobachtungen ist es den Wissenschaftlern gelungen, eine Tür zum Verständnis der Mechanismen des assoziativen Lernens aufzustoßen. Noch ist nicht klar, ob alle Zelltypen des Großhirns solche Veränderungen aufzeigen und warum der von den Forschern beobachtete Zelltyp einen Abbau von Nervenzellverbindungen aufzeigt und nicht einen Aufbau. Auch sind die physiologischen Signale unbekannt, die zu einer solchen Verknüpfung mit darauffolgendem Dornfortsatzumbau führen. All dies muss in weiteren Experimenten aufgeklärt werden.

Viele Gehirnkrankheiten, wie Schizophrenie, Alzheimer und Parkinson sind durch Beeinträchtigungen des Großhirns und damit des Denk- und Lernvermögens charakterisiert. Bevor die Verbesserung dieser Symptome und ihrer zugrundeliegenden neuronalen Prozesse ins Visier genommen werden können, müssen dieselben Prozesse im gesunden Gehirn verstanden worden sein. Auf diesem Weg sind die Tübinger Forscher ein kleines, aber wichtiges Stück weiter gekommen.

Übertragbarkeit der Ergebnisse auf den Menschen
Das Großhirn ist ein Wunderwerk an dicht miteinander verschalteten Nervenzellen, die über der gesamten Oberfläche unseres Großhirns in sich wiederholenden Einheiten mit nahezu identischem Verschaltungsplan vorliegen. Die Teile des Denkorgans arbeiten daher sehr wahrscheinlich nach demselben Schema, ob diese nun mit Signalen aus den Sinnesorganen, Kommandos zur Bewegung der Muskeln oder abstrakteren Denkvorgängen umgehen. Interessanterweise gilt diese Ähnlichkeit auch für den Aufbau der Großhirne beim Vergleich zwischen Säugetieren. Die Speziesunterschiede im mikroskopischen Aufbau dieses Organs sind winzig. Die höheren Denkleistungen des Menschen scheinen daher nicht durch eine „genialere Verschaltung“ im Großhirns, sondern lediglich durch die massivere Akkumulation von ähnlich aufgebauten Netzwerkeinheiten und damit die Möglichkeit der Repräsentation von noch mehr und noch abstrakteren Denkeinheiten getragen zu sein. Die Ähnlichkeit zwischen Spezies macht es möglich, dass durch das Studium von tierischen Gehirnen wichtige Erkenntnisse über menschliche Denkleistungen zu Tage gefördert werden können.

Originalpublikation
Joachimsthaler, B., Brugger, D., Skodras, A., Schwarz, C. (2015) Spine loss in primary somatosensory cortex during trace eyeblink conditioning J Neurosci, 35:3772-3781

Silke Jakobi | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics