Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Denken zusehen: Mechanismen des assoziativen Lernens weiter entschlüsselt

25.03.2015

Das Gehirn speichert Informationen nicht an einem bestimmten Ort, sondern als Fragmente an vielen Orten. Zum Denken und Lernen verknüpft es sie wieder.

Wie diese Netzwerkarbeit die plastischen Verbindungen zwischen den Nervenzellen – den Dornfortsätzen – verändert, zeigt eine aktuelle Publikation Tübinger Hirnforscher im Journal of Neuroscience. Mitt els der Zwei-Photonenmikroskopie konnten die Forscher einzelne Dornfortsätze im lernenden Gehirn von Mäusen beobachten: Je länger der Lernprozess voranschritt und je besser die individuelle Lernleistung war, desto stärker wurden die Dornfortsätze abgebaut.


Ein Dornfortsatz (ca. 1 Mikrometer im Durchmesser) einer Großhirnnervenzelle einer lernenden Maus wird abgebaut. Zwei Bilder an zwei verschiedenen Tagen (roter Pfeil: fehlender Dornfortsatz).

Hertie-Institut für klinische Hirnforschung (HIH)

Die Erkenntnisse der Studie tragen auch zu einem besseren Verständnis von Hirnerkrankungen wie Alzheimer, Parkinson und Schizophrenie bei.

Obwohl das Gehirn bei weitem nicht die Schnelligkeit eines Computers erreicht, übertrifft es diesen in seiner Lernfähigkeit und seinem Erinnerungsvermögen. Grundlage dafür ist die flexible Vernetzung von über 100 Milliarden Nervenzellen. Eine wichtige Rolle spielen dabei Dornfortsätze, auch „dendritische Spines“ genannt. Diese feinsten Nervenzellausläufer werden beim Lernen und Erinnern stetig umgebaut. Die Veränderbarkeit neuronaler Signalübertragung ist eine der herausragenden Eigenschaften des Gehirns und wird von Neurowissenschaftlern als zelluläre Grundlage für das menschliche Gedächtnis angesehen.

Dies ist besonders einleuchtend, wenn man assoziatives Gedächtnis verstehen möchte. Dabei gilt es, Informationen, die auf den ersten Blick nichts miteinander zu tun haben, aufzunehmen, zu verknüpfen und als sinnvollen Zusammenhang zu speichern. Solche Verknüpfungen (oder Assoziationen) liegen auch den komplexesten Denkvorgängen zugrunde.

„Nur wenn die beiden höchst unterschiedlichen Signale miteinander verknüpft werden, erfolgt ein Umbau an den Kontaktstellen der miteinander kommunizierenden Nervenzellen. Kurz gesagt: "Wir haben dann etwas gelernt“, erklärt Professor Cornelius Schwarz vom Hertie-Institut für klinische Hirnforschung und dem Werner Reichhardt Centrum für Integrative Neurowissenschaften der Universität Tübingen.

Damit die Forscher dem Gehirn der Mäuse beim Lernen zusehen konnten, trainierten sie diese auf eine einfache Lernaufgabe: Der Assoziation eines Berührungsreizes an ihren Tasthaaren mit einem darauffolgenden kleinen Luftstoß gegen die Augen. „Das Tasthaarsystem der Nager ist hierfür von herausragender Bedeutung, da die sensorischen Eingänge jedes einzelnen Tasthaars an einem sehr kleinen, aber gut bekannten Ort auf der Großhirnoberfläche verarbeitet werden“, sagt Schwarz.

Während die Tiere lernten, ihre Augen nach der Tasthaarberührung zu schließen, um den Luftstoß aufs offene Auge zu vermeiden, haben die Hirnforscher starke Umbauvorgänge der Dornfortsätze beobachtet. Es wurden im Mittel 15 Prozent der Dornfortsätze abgebaut, je länger der Lernprozess voranschritt und je besser war die individuelle Lernleistung der Maus. Ein Hinweis auf die hohe räumliche Präzision der Assoziationsprozesse ist es, dass der Dornfortsatzumbau nur an dem Punkt der Großhirnoberfläche stattfand, wo der sensorische Eingang des fraglichen Tasthaares war.

„Die beobachteten, hochspezifischen Eigenschaften des Dornfortsatzumbaus und die große zeitliche Korrelation mit dem Lernerfolg geben großen Anlass zur Hoffnung, dass der damit verbundene Netzwerkumbau kausal für die langfristige Speicherung des Lerninhalts verantwortlich ist“, so Schwarz über die Ergebnisse der Studie. Mit diesen Beobachtungen ist es den Wissenschaftlern gelungen, eine Tür zum Verständnis der Mechanismen des assoziativen Lernens aufzustoßen. Noch ist nicht klar, ob alle Zelltypen des Großhirns solche Veränderungen aufzeigen und warum der von den Forschern beobachtete Zelltyp einen Abbau von Nervenzellverbindungen aufzeigt und nicht einen Aufbau. Auch sind die physiologischen Signale unbekannt, die zu einer solchen Verknüpfung mit darauffolgendem Dornfortsatzumbau führen. All dies muss in weiteren Experimenten aufgeklärt werden.

Viele Gehirnkrankheiten, wie Schizophrenie, Alzheimer und Parkinson sind durch Beeinträchtigungen des Großhirns und damit des Denk- und Lernvermögens charakterisiert. Bevor die Verbesserung dieser Symptome und ihrer zugrundeliegenden neuronalen Prozesse ins Visier genommen werden können, müssen dieselben Prozesse im gesunden Gehirn verstanden worden sein. Auf diesem Weg sind die Tübinger Forscher ein kleines, aber wichtiges Stück weiter gekommen.

Übertragbarkeit der Ergebnisse auf den Menschen
Das Großhirn ist ein Wunderwerk an dicht miteinander verschalteten Nervenzellen, die über der gesamten Oberfläche unseres Großhirns in sich wiederholenden Einheiten mit nahezu identischem Verschaltungsplan vorliegen. Die Teile des Denkorgans arbeiten daher sehr wahrscheinlich nach demselben Schema, ob diese nun mit Signalen aus den Sinnesorganen, Kommandos zur Bewegung der Muskeln oder abstrakteren Denkvorgängen umgehen. Interessanterweise gilt diese Ähnlichkeit auch für den Aufbau der Großhirne beim Vergleich zwischen Säugetieren. Die Speziesunterschiede im mikroskopischen Aufbau dieses Organs sind winzig. Die höheren Denkleistungen des Menschen scheinen daher nicht durch eine „genialere Verschaltung“ im Großhirns, sondern lediglich durch die massivere Akkumulation von ähnlich aufgebauten Netzwerkeinheiten und damit die Möglichkeit der Repräsentation von noch mehr und noch abstrakteren Denkeinheiten getragen zu sein. Die Ähnlichkeit zwischen Spezies macht es möglich, dass durch das Studium von tierischen Gehirnen wichtige Erkenntnisse über menschliche Denkleistungen zu Tage gefördert werden können.

Originalpublikation
Joachimsthaler, B., Brugger, D., Skodras, A., Schwarz, C. (2015) Spine loss in primary somatosensory cortex during trace eyeblink conditioning J Neurosci, 35:3772-3781

Silke Jakobi | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise