Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Defekte Zellverbindungen verursachen Wasserkopf

16.05.2017

Ein defektes Gen führt zu Veränderungen in der Zellschicht zwischen Hirnflüssigkeit und dem eigentlichen Hirnnervengewebe und verursacht so einen Flüssigkeitsstau im Gehirn. Mit diesem Zusammenhang haben Wissenschaftler des Deutschen Krebsforschungszentrums in Heidelberg nun erstmals einen Mechanismus für genetisch bedingten Wasserkopf entdeckt.

Etwa eines von 2000 Neugeborenen hat einen Wasserkopf, in der Fachsprache als Hydrocephalus bezeichnet. Dabei kann die Hirnflüssigkeit nicht in Richtung Rückenmark abfließen und staut sich stattdessen in den Flüssigkeitsräumen des Gehirns.


Rasterelektronenmikroskopische Aufnahme der geschädigten Ependymschicht innerhalb eines Hirnventrikels nach Verlust des Mpdz-Gens.

Quelle: Anja Feldner, Manfred Ruppel, DKFZ

Dadurch schwillt der Kopf ballonartig an und Hirngewebe wird verdrängt. Es drohen verschiedene neurologische Folgen wie Kopfschmerzen, Erbrechen, Seh- und Bewegungsstörungen, Krampfanfälle oder geistige Behinderungen. Die möglichen Ursachen für die Entstehung eines Hydrocephalus sind vielseitig. In einigen Fällen ist die Störung genetisch bedingt.

Das Team um Andreas Fischer, Deutsches Krebsforschungszentrum Heidelberg, entdeckte bereits 2013, dass ein Defekt in einem Gen namens Mpdz bei Mäusen einen Wasserkopf verursacht. Im selben Jahr machten Wissenschaftler aus Saudi Arabien das menschliche Pendant dazu als eine genetische Ursache für Hydrocephalus beim Menschen aus.

Nun ist es Fischer und seinem Team gelungen, den Mechanismus hinter diesem Gendefekt aufzudecken. Die Wissenschaftler haben beobachtet, dass bei neugeborenen Mäusen mit defektem Mpdz-Gen das Ependym, die trennende Zellschicht zwischen Hirnnervengewebe und Hirnflüssigkeit, stark geschädigt ist.

Um diese lebensnotwendige Grenze aufrecht zu erhalten, wandern andere Zellen, so genannte Astroglia, ein. Sie sorgen für Stabilität der trennenden Gewebeschicht – jedoch zu einem hohen Preis: Das Ependym vernarbt, wodurch sich das so genannte Aquädukt, die enge Verbindung zwischen zwei Hirnventrikeln, verschließt und die Hirnflüssigkeit nicht mehr abfließen kann.

„Es spricht vieles dafür, dass ein Verlust des Mpdz-Gens die Stabilität der dichten Verbindungen, den so genannten Tight Junctions, zwischen benachbarten Zellen des Ependyms vermindert“, erklärt Anja Feldner, Erstautorin der Studie. Das Genprodukt von Mpdz kontrolliert Moleküle, die eine entscheidende Rolle für die Stabilität der Tight Junctions spielen.

Tatsächlich zeigte sich bei Experimenten in der Kulturschale, dass diese Verbindungen zwischen Ependymzellen mit defektem Mpdz geschwächt sind. „Damit haben wir einen entscheidenden Mechanismus aufgeklärt, wie ein genetisch bedingter Hydrocephalus entsteht“, erläutert Andreas Fischer.

Anja Feldner, M. Gordian Adam, Fabian Tetzlaff, Iris Moll, Dorde Komljenovic, Felix Sahm, Tobias Bäuerle, Hiroshi Ishikawa, Horst Schroten, Thomas Korff, Ilse Hofmann, Hartwig Wolburg, Andreas von Deimling und Andreas Fischer: Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Molecular Medicine 2017. DOI: 10.15252/emmm.201606430

Ein Bild zur Mitteilung steht zur Verfügung unter:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/Feldner-Mpdz.jpg
BU: Rasterelektronenmikroskopische Aufnahme der geschädigten Ependymschicht innerhalb eines Hirnventrikels nach Verlust des Mpdz-Gens.

Nutzungshinweis für Bildmaterial zu Pressemitteilungen
Die Nutzung ist kostenlos. Das Deutsche Krebsforschungszentrum (DKFZ) gestattet die einmalige Verwendung in Zusammenhang mit der Berichterstattung über das Thema der Pressemitteilung bzw. über das DKFZ allgemein. Als Bildnachweis ist folgendes anzugeben: „Quelle: Anja Feldner, Manfred Ruppel, DKFZ“.
Eine Weitergabe des Bildmaterials an Dritte ist nur nach vorheriger Rücksprache mit der DKFZ-Pressestelle (Tel. 06221 42 2854, E-Mail: presse@dkfz.de) gestattet. Eine Nutzung zu kommerziellen Zwecken ist untersagt.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de 

Dr. Sibylle Kohlstädt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics