Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computersimulation enthüllt neue Seite der Kavitation

29.03.2016

Eine bisher unbekannte Entstehungsweise von Kavitationsblasen haben Forscher mit Hilfe einer Modellrechnung entdeckt. In der Fachzeitschrift Science Advances beschreiben sie, wie Öl-abstoßende und Öl-anziehende Oberflächen auf einen vorbeiströmenden Ölfilm wirken. Je nach Viskosität des Öls bildet sich am Übergang eine Dampfblase. Diese sogenannte Kavitation kann Material schädigen etwa bei Schiffsschrauben oder Pumpen. Sie kann aber auch einen positiven Effekt haben, in dem sie für Abstand zwischen Bauteilen sorgt und damit Schädigung vermeidet. DOI: 10.1126/sciadv.1501585

Die Material- und Reibungsforscher wollten wissen, welchen Einfluss chemisch unterschiedliche Oberflächen auf das Fließverhalten eines Schmierstoffs haben. Insbesondere interessierte sie das Verhalten in nanometerbreiten Schmierspalten, einem kritischen Fall nah an der Grenzreibung, das heißt kurz vor dem direkten Kontakt zwischen Oberflächen.


Eine Kavitationsblase entsteht im Schmiermittel zwischen Öl-anziehender (gelb) und Öl-abstoßender Fläche (schwarz). Als Puffer könnte sie Verschleiß reduzieren.

Bild: KIT

Dazu stellten sie ein mathematisches Modell auf, in welchem sie die Viskosität des Schmierstoffs und die Oberflächeneigenschaften der Wände variierten. „Wir waren sehr überrascht, dass in der Simulation dann am Übergang der Oberflächen – also der Grenze zwischen Öl-anziehend und Öl-abstoßend – Kavitation entsteht“, berichten Dr. Lars Pastewka und Prof. Peter Gumbsch vom Institut für Angewandte Materialien des KIT.

Kavitation ist ein bekanntes und wegen seiner zerstörerischen Kraft gefürchtetes, physikalisches Phänomen. „Bisherige Kavitationsmodelle gehen von einer bestimmten Geometrie aus, die Kavitation hervorruft, wie zum Beispiel eine Engstelle in einer Pumpe oder eine Schiffsschraube, die hohe Strömungsgeschwindigkeiten verursacht“, erklärt Pastewka.

Dabei gilt das physikalische Gesetz von Bernoulli, dass der statische Druck einer Flüssigkeit umso geringer ist, je schneller sie strömt. Fällt dabei der statische Druck unter den Verdampfungsdruck der Flüssigkeit, bilden sich Dampfblasen. Steigt der Druck wieder – zum Beispiel wenn die Flüssigkeit nach einer Engstelle in einer Pumpe wieder langsamer fließt – kondensiert der Dampf in den Blasen schlagartig und sie implodieren. Die dabei entstehenden extremen Druck- und Temperaturspitzen führen zu typischen Kavitationskratern und erheblicher Erosion selbst in gehärtetem Stahl.

„Diese schlagartige Implosion der Dampfblasen passiert aber in den meisten geschmierten Tribosystemen nicht“, betont Dr. Daniele Savio, der mittlerweile am Fraunhofer-Institut für Werkstoffmechanik in Freiburg forscht. „Da der Fluidspalt zwischen aneinander reibenden Oberflächen in der Regel sehr dünn ist, können die Kavitationsblasen nicht stark wachsen und bleiben deswegen stabil. Die Kavitationsblase hat dann keine schädliche Wirkung und dient sogar als Puffer zwischen den Oberflächen, was Reibung und Verschleiß reduziert. Deswegen ist es wichtig, diesen positiven Effekt kontrolliert zu generieren“, erklärt er.

In ihrem Simulationsmodell belegen Savio und seine Kollegen nun, dass auch chemisch wechselnde Oberflächen zu Kavitationsblasen führen können. Sie stellen in ihrer gerade erschienenen Publikation in Science Advances die Frage, ob Kavitation in Situationen, wo ein Schmierstoff zwischen zwei Oberflächen strömt, die Norm ist und nicht die Ausnahme. „Denn üblicherweise sind Oberflächen, wie sie in Motoren oder Zylindersystemen vorkommen, nie homogen – also nur Öl-anziehend oder Öl-abstoßend“, betont Savio. „Der von uns berechnete Effekt könnte daher überall in geschmierten Motoren und Pumpen entstehen, wo wechselnde Oberflächeneigenschaften aneinandergrenzen.“

Kavitation wurde bisher ausschließlich als geometrischer Effekt betrachtet, der durch Scherkräfte, Fließgeschwindigkeit und Druckunterschiede entsteht, beschreiben die Forscher die Situation. „Dass Kavitation auch an Übergängen von wechselnden Oberflächeneigenschaften entstehen kann, ist komplett neu“, hebt Pastewka hervor. Durch ein gezieltes Einstellen der Oberflächenchemie, so sind sich die Forscher sicher, könnte man die Wechselwirkung zwischen Oberfläche und Schmierstoff erheblich verbessern. In den Modellsimulationen konnte man eine Verbesserung der Oberflächentrennung um 10 Prozent beobachten.

„Zusätzliche 10 Prozent Abstand erlauben beispielsweise in Gleitlagern höhere Normalkräfte und Lasttragfähigkeiten bei ansonsten gleichen Bedingungen“, überlegt Savio. In jedem Fall, da sind sich die Wissenschaftler einig, muss die Oberflächenchemie als Designelement im Maschinenbau nun neu bewertet werden.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung