Chlorophyll: Keineswegs dasselbe in Grün

Weltweit werden jedes Jahr in Pflanzen und Algen etwa tausend Millionen Tonnen Chlorophyll gebildet sowie wieder abgebaut. Die Pflanzen bauen ihr grünes Pigment in Blättern und Früchten auf einem weitgehend einheitlichen Weg linear ab. So lautet die bisherige Annahme der Wissenschaft.

Geht es nach dem jüngsten Ergebnis von Innsbrucker Chemikern rund um Prof. Bernhard Kräutler und dem Züricher Botaniker Prof. Stefan Hörtensteiner könnte dieses Schema „F“ weiter wanken. Die Zeitschrift Plant Cell berichtet darüber – zusammen mit einem Highlight – in ihrer aktuellen Printausgabe.

Kräutlers Gruppe am Institut für Organische Chemie und dem Centrum für Molekulare Biowissenschaften der Universität Innsbruck ist für grundlegende Arbeiten zum Chlorophyll-Abbau bekannt. In den nun vorliegenden Studien wurde in Zusammenarbeit mit dem Team von Prof. Stefan Hörtensteiner vom Institut für Pflanzenbiologie in Zürich untersucht, wie die Acker-Schmalwand (Arabidopsis thaliana) ihr Blattgrün abbaut. Die Acker-Schmalwand produziert nicht nur – wie inzwischen Lehrbuchmeinung – auf geradlinigem Weg über enzymatische Reaktionen und mindestens eine nicht-enzymatische Reaktion farblose Abbauprodukte des Chlorophylls, die Phyllobilane.

Sie produziert auch eine verwandte Sorte von anderen farblosen Verbindungen, die als „Dioxobilane“ bezeichnet werden. Derartige Abbauprodukte konnte die Innsbrucker Gruppe zuletzt auch für den Spitzahorn (Acer platanoides) nachweisen.

Bei der Analyse der Acker-Schmalwand wurde nun auch laut Kräutler „der für den neuen Weg des Chlorophyll-Abbaues verantwortliche Schlüsselschritt entdeckt. Unsere Entdeckung ist von spezieller Tragweite, da die Modellpflanze Acker-Schmalwand ein molekularbiologisch sehr intensiv untersuchter Organismus ist“. Das vollständig entschlüsselte Erbgut dieser weit verbreiteten Pflanze enthält mit 25.700 Genen nicht viel weniger als das Genom des Menschen.

Das Schlüsselenzym beim Übergang des Abbaues von bisher bekannten Phyllobilanen zu Dioxobilanen wurde ebenfalls identifiziert. „Es ist ein Cytochrom P-450, dessen Gen-Abschnitt schon seit längerem als CYP89A9 codiert ist, aber auf die Aufklärung seiner Funktion wartete“, sagt der Chemiker. Cytochrome P-450 enthalten den roten Blutfarbstoff als Cofaktor und sind weitverbreitete Biokatalysatoren. Sie verwenden Luftsauerstoff, um metabolisch wichtige – aber chemisch oft schwierige – Oxidationsreaktionen zu erzielen.

Abbauprodukte sind kein Abfall
Dem Team gelang jetzt nicht nur erstmals der Nachweis, über welche Schlüsselreaktion Dioxobilane aus dem Chlorophyll entstehen. Die Gruppe identifizierte damit auch den entscheidenden Schritt, der dafür verantwortlich ist, dass der Abbau des Blattgrüns – im Gegensatz zu bisherigen Befunden – keineswegs nach Schema ´F` – sondern nichtlinear abläuft. Die eigens aus den herkömmlichen Phyllobilanen entstehenden Dioxobilane haben große strukturelle Ähnlichkeiten mit den Abbauprodukten des Häms, wie dem Bilirubin, dem „Gelbsucht-Pigment“, sowie weiteren Bilinen, die man speziell in der Gallenflüssigkeit findet. „Wir ziehen auch deshalb den Schluss, dass die Abbauprodukte des Blattgrüns kein Abfall sind, der in den Vakuolen landet, die ja landläufig als ´Abfallbehälter der Pflanzenzelle` bezeichnet werden. Vielmehr dürften die entstehenden Abbauprodukte eine physiologische Rolle in der Pflanze spielen“, betont der Chemiker. Chlorophyll-Abbauprodukte kommen auch natürlich in reifen Früchten vor und sind Teil unserer Nahrung. Dies hat die Gruppe rund um Kräutler vor einigen Jahren bereits nachgewiesen.

Wenn das Team rund um Kräutler und Hörtensteiner Blätter sammelt, diese im Labor extrahiert und mithilfe von Massenspektrometrie und Kernresonanzuntersuchungen die Molekülstrukturen einzelner Substanzen aufklärt, ist die Gruppe den chemischen Grundlagen lebenswichtiger Prozesse auf der Spur. Natürliche Pigmente, wie das Blattgrün oder der für die Farbe unserer roten Blutkörperchen verantwortliche Sauerstofftransporter Häm, besitzen überlebenswichtige Stoffwechsel-Funktionen. Gefördert wurden diese Forschungen zum Chlorophyll-Abbau vom österreichischen Wissenschaftsfonds (FWF).

Bilder: http://homepage.uibk.ac.at/~c72602/presse/presse.htm

Publikation: Bastien Christ, Iris Süssenbacher, Simone Moser, Nicole Bichsel, Aurelie Egert, Thomas Müller, Bernhard Kräutler and Stefan Hörtensteiner. Cytochrome P450 CYP89A9 Is Involved in the Formation of Major Chlorophyll Catabolites during Leaf Senescence in Arabidopsis. Plant Cell 2013 25: 1868-1880.
http://dx.doi.org/10.1105/tpc.113.112151
Highlight in Plant Cell:
http://dx.doi.org/10.1105/tpc.113.250513
Kontakt:
O. Univ.-Prof. Dr. Bernhard Kräutler
Institut für Organische Chemie &
Centrum für Molekulare Biowissenschaften (CMBI)
Innrain 80/82, A-6020 Innsbruck
Telefon: +43(0)512 507 57700
Mail: bernhard.kraeutler@uibk.ac.at
Web: http://homepage.uibk.ac.at/~c72602/kraeutler.htm
Mag. Gabriele Rampl
Science Communications
Telefon: +43(0)650/2763351
Mail: office@scinews.at
Web: www.scinews.at

Media Contact

Gabriele Rampl SciNews

Weitere Informationen:

http://www.uibk.ac.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer