Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn chemische Analytik nach Rosen duftet

18.09.2008
Wissenschaftler des Julius Kühn-Instituts (JKI) untersuchten mittels Raman-Spektroskopie Rosenblüten-Extrakte, Rosenöl sowie Rosenwasser und geben der Parfümerie- und Aromaindustrie eine effiziente Methode zur schnellen Qualitätskontrolle an die Hand.

Das aus den Blütenblättern der "Damaszener-Rose" (Rosa damascena) gewonnene Rosenöl ist das teuerste ätherische Öl der Welt. Aus drei Tonnen Rosenblüten lässt sich ca. ein Liter Rosenöl destillieren. Im Großhandel kostet ein Kilogramm echtes bulgarisches Rosenöl (rosa damascens) über 5000 Euro.

Angesichts solcher Preise ist es wichtig, rasch überprüfen zu können, ob die Qualität des Naturproduktes stimmt und man nicht gepanschte Ware eingekauft hat. Hilfe für Hersteller von Riech- und Aromastoffen liefert hierbei die analytische Chemie. Die Damaszener Rose verdankt ihren betörenden Duft insbesondere dem Phenylethylalkohol.

Der Gehalt dieser Hauptkomponente sowie weiterer Nebenkomponenten können als Indikatoren für die Reinheit von Rosenöl herangezogen werden. Wissenschaftler des Julius Kühn-Instituts (JKI) in Quedlinburg untersuchten mittels Raman-Spektroskopie die Zusammensetzung von Rosenextrakten (konkretes und absolutes Rosenöl), von durch Wasserdampfdestillation erhaltenem Rosenöl sowie dem hierbei als Nebenprodukt anfallenden Rosenwasser.

"Bisher wurde zur Qualitätskontrolle meist Gaschromatographie in Verbindung mit Massenspektrometrie benutzt", erklärt Prof. Dr. Hartwig Schulz vom JKI. Diese Analyse ist jedoch sehr zeitaufwändig. Die genauen Gehalte einzelner Duftkomponenten können teilweise nur unzureichend erfasst werden und die in den Rosenölen enthaltenen, nichtflüchtigen Substanzen sind kaum nachzuweisen. Die Wissenschaftler suchten eine neue verlässlichere Methode. Ihre Antwort auf das Problem ist die Raman-Spektroskopie, kombiniert mit neuen chemometrischen Auswerte-Algorithmen. "Dabei dienten uns Proben mit verschiedenen Gehalten an Phenylethylalkohol als Standard, mit denen wir dann die jeweiligen unbekannten Gehalte in den Naturstoffen erfolgreich bestimmen konnten", erklärt Schulz das Vorgehen. Die Raman-Spektroskopie hat einen weiteren entscheidenden Vorteil, dass auch ein hoher Wassergehalt der Probe das Ergebnis nicht beeinträchtigt. "Das heißt, man muss die Proben vor der spektroskopischen Untersuchung nicht speziell aufarbeiten, sondern kann auch Produkte wie Rosenwasser direkt vermessen", verdeutlicht Schulz. Diese methodische Neuerung stelle eine zusätzliche Option für die Qualitätskontrolle von Rosenblüten-Extrakten und Rosenöl dar. Sie lässt sich prinzipiell auch auf ätherische Öle anderer Pflanzenarten übertragen, so der Ausblick des JKI-Chemikers.

Die Ergebnisse wurden in der vergangenen Woche (7.-10.9.) anlässlich des 39. International Symposium on Essential Oils (ISEO 2008) in Quedlinburg vorgestellt.

Ihr Ansprechpartner vor Ort:
Prof. Dr. Hartwig Schulz
Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz
Julius Kühn-Institut - Bundesforschungsinstitut für Kulturpflanzen (JKI)
Erwin-Baur-Str. 27, 06484 Quedlinburg
Tel: 03946 / 47-301
E-Mail: hartwig.schulz@jki.bund.de
Hintergrundinformation zu Ölrosenkulturen und Ölgewinnung:
Ölrosenkulturen gibt es z.B. in Moldawien, in der Kaukasus-Region, auf der Krim, in Grusinien, in der Ukraine, in der Türkei, in Bulgarien, in Marokko und in Indien. In Frankreich ist die Produktion von Rosenprodukten vor allem im Parfümerie-Zentrum um die Stadt Grasse angesiedelt. Rosenöl wird hauptsächlich in der Türkei, in Bulgarien und in Südfrankreich erzeugt.

Die Ernte der Rosenblüten beginnt in Bulgarien z.B. um den 20. Mai und endet Mitte Juni. Die Blüten müssen in den frühen Morgenstunden gepflückt werden. Die Ausbeute ist gering: Sie beträgt lediglich 0,02 bis 0,05 Prozent des eingesetzten Pflanzenmaterials. Die Haupterntezeit der Rosenblüten liegt morgens zwischen 4 und 9 Uhr. Späteres Pflücken ist nicht sinnvoll, da sich der Ölgehalt der Blüten aufgrund der ansteigenden Temperatur im Laufe des Tages verringert.

Die weitere Verarbeitung der Rosenblüten erfolgt in speziellen Destillationsanlagen, die mehrere Tonnen Blüten aufnehmen können. Die Blüten werden zunächst mit der vierfachen Menge Wasser eingeweicht, anschließend erhitzt und die flüchtigen Komponenten abdestilliert. Die duftenden Bestandteile der Rosenblüten werden zusammen mit dem aufsteigenden Wasserdampf in die Gasphase befördert und schließlich an dem in der Anlage befindlichen Kühler kondensiert. Das Rosenöl scheidet sich hier als spezifisch leichtere Phase auf dem Kondensat (Rosenwasser) ab. Für den Handel wird Rosenwasser üblicherweise mit Parabenen oder Natriumbenzoat konserviert, da es sonst sehr schnell verkeimen würde.

Rosenextrakt (konkretes Rosenöl) wird durch Extraktion aus frisch gepflückten Blüten mit gereinigtem Petrolbenzin gewonnen; nach dem Abdampfen des Lösungsmittels erhält man ein wachsartiges orangegelbes bis olivgrünes Produkt, das einen intensiven süßblumigen Rosengeruch aufweist. Aus dem konkreten Rosenöl wird anschließend durch Extraktion mit verdünntem Äthanol das sogenannte 'absolute Rosenöl' hergestellt. Hierbei gelingt es, die aus den Blüten stammenden Wachse (Stearoptene) weitestgehend abzutrennen.

Stefanie Hahn | idw
Weitere Informationen:
http://www.jki.bund.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik