Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie für die Methanol-Wirtschaft

22.09.2015

Weil die Preise von Erdöl instabil und seine Ressourcen begrenzt sind, werden Petrochemikalien zunehmend aus Methanol hergestellt – vor allem in China. Chemiker der ETH Zürich haben nun die ersten Schritte dieses Umwandlungsprozesses entschlüsselt.

Es ist die weltweit am häufigsten produzierte Grundchemikalie: Ethen – ein kleines Molekül bestehend aus zwei Kohlenstoffatomen und vier Wasserstoffatomen. Es ist ein Grundbaustein für eine grosse Palette an Polymeren und Weichmachern.


Methanol – beziehungsweise sein Abkömmling Dimethylether (links dargestellt) – wird auf der Oberfläche von Aluminiumoxid zu Ethen (oben Mitte) umgesetzt.

Aleix Comas-Vives / ETH Zürich

Der weitverbreitete Verpackungskunststoff Polyethylen (PE) ist nur einer davon. Während Ethen heute vor allem durch sogenanntes Cracken von Erdöl hergestellt wird, nimmt mit den stets stark schwankenden Preisen und den endlichen Reserven von Erdöl ein alternativer Herstellungsweg stark an Bedeutung: dessen Synthese aus Methanol. Bekannt ist dieser Syntheseschritt unter dem englischen Namen «Methanol-to-olefins» (MTO).

Wissenschaftler der ETH Zürich und der ENS Lyon haben nun im Detail aufgeklärt, wie diese Reaktion beginnt.

Chemiker entwickelten den MTO-Prozess in den späten 1970er-Jahren, heute stehen Produktionsanlagen weltweit. Nirgends jedoch gibt es so viele davon wie in China: Fünf Grossanlagen sind dort in Betrieb, dreizehn weitere in Planung.

Denn China hat einen riesigen Bedarf an Petrochemikalien, jedoch kein Erdöl. Allerdings hat das Land Kohlereserven, und über die Vergasung von Kohle kann auf einfache Weise Methanol hergestellt werden. Ausserdem lässt sich Methanol aus Erdgas herstellen. Chinesische Investoren planen daher, in den USA aus dem dort in Fülle vorhandenen Schiefergas Methanol für den Export nach China herzustellen.

Woher stammt das notwendige Carbenium-Ion?

Damit die MTO-Reaktion überhaupt stattfindet, werden dem Methanol bei 400 Grad Celsius sogenannte Zeolithe als Katalysator beigemischt. Das sind poröse Aluminiumsilikat-Körner. Lange Zeit konnten Wissenschaftler den chemischen Mechanismus der MTO-Reaktion nicht genau erklären. Und vor 20 Jahren postulierten Chemiker, dass ein weitere Moleküle im Spiel sein müssen: ringförmige, positiv geladene Kohlenwasserstoff-Moleküle, in denen fünf bis sechs Kohlenstoffatome miteinander verbunden sind. Es sind diese Carbenium-Ionen genannten Moleküle, welche eigentlich mit Methanol reagieren: Sie fügen zwei Methanol-Moleküle zusammen und stellen eine chemische Bindung zwischen zwei Kohlenstoffatomen her, womit Ethen entsteht.

Nur: Wie gelangen diese Carbenium-Ionen ins Reaktionsgemisch? Wissenschaftler stellten schon früh die Hypothese auf, dass das Methanol damit verunreinigt sein könnte und diese Verunreinigung eine Voraussetzung dafür ist, dass die Reaktion überhaupt starten kann.

Das schweizerisch-französische Forscherteam schlägt nun eine andere Erklärung vor. «Wir konnten zeigen, dass Aluminumoxid, welches auch in den Zeolith-Katalysatoren vorhanden ist, Methanol in Ethen und andere Kohlenwasserstoffe umsetzen kann. Diese wiederum können in den Poren der Zeolithe in Carbenium-Ionen umgewandelt werden», erklärt Christophe Copéret, Professor für Oberflächen- und Grenzflächenchemie an der ETH Zürich und einer der Autoren der Studie.

«Während die MTO-Reaktion bereits sehr gut im industriellen Massstab läuft, erklären wir nun, wie sie zum Laufen kommt. Unsere Arbeit zeigt ausserdem, dass einfache Oxide wie Aluminumoxid die Verbindung von zwei Kohlenstoffatomen auslösen kann. Damit werden nun auch neue Wege denkbar für die Umwandlung von Methanol-Abkömmlingen in längerkettige Kohlenwasserstoffe.»

Literaturhinweis

Comas-Vives A, Valla M, Copéret C, Sautet P: Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina. ACS Central Science, 5. August 2015, doi: 10.1021/acscentsci.5b00226 [http://dx.doi.org/10.1021/acscentsci.5b00226]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/chemie-fue...

Fabio Bergamin | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik