Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie: Eine Hammer-Tauschaktion!

24.02.2016

Eine sichere Variante der Hydrocyanierung verhilft Chemikern zu einem vielseitigen Werkzeug mit umkehrbarer Funktion

Chemie ist wie ein Werkzeugkasten. Um etwa medizinische Wirkstoffe, Kunststoffe oder Farben herzustellen, greifen Chemiker zu diversen Reagenzien und Methoden wie Handwerker zu ihren Utensilien. Wissenschaftler des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr präsentieren nun ein neues chemisches Werkzeug, das einen wichtigen Syntheseschritt, nämlich die Hydrocyanierung, ermöglicht und ungefährlicher ist als die dafür bislang gängige Methode. Das ist in etwa so, als würde ein Hammer erfunden, mit dem man sich nicht auf die Finger klopfen kann.


Ein molekularer Tausch: Chemiker des Max-Planck-Instituts für Kohlenforschung haben einen sicheren Weg gefunden Cyanid-Gruppe (CN) eine funktionelle Gruppe, die viele Möglichkeiten für die Weiterverarbeitung einer Substanz schafft, von einem Molekül (R‘-) auf ein anderes (R-) zu übertragen. Dabei übernimmt das Spender-Molekül eine Doppelbindung(=) seines Reaktionspartners.

© iStock/skvoor/MPG

Die Forscher haben zwischen Molekülen zwei funktionelle Gruppen, genauer gesagt eine Cyanogruppe und eine Doppelbindung, ausgetauscht. Funktionelle Gruppen sind wie Haken oder Ösen für Moleküle. Ein Molekül mit einer Cyanogruppe zu versehen, schafft vielfältige Möglichkeiten, es weiter zu verändern, und ist ein wichtiger Schritt etwa bei der Herstellung von Nylon. Bislang ist dies aber nur mit dem giftigen Cyanwasserstoff, besser bekannt als Blausäure, möglich.

Manchmal mögen auch Chemiker die Chemie nicht. „Wir haben uns gewundert, warum die Hydrocyanierung vor allem in Forschungslabors so selten eingesetzt wird“, sagt Bill Morandi, Leiter einer Forschungsgruppe am Max-Planck-Institut für Kohlenforschung. Bei dieser Reaktion heften Chemiker eine Cyanogruppe an ein Molekül. Damit fügen sie dem Kohlenstoff-Gerüst eines organischen Moleküls nicht nur ein weiteres Atom hinzu. Eine Cyanogruppe lässt sich auch in andere funktionelle Gruppen umwandeln, die entweder für weitere Reaktionsschritte gebraucht werden oder die Eigenschaften des Endproduktes wie etwa eines medizinischen Wirkstoffs entscheidend prägen.

„Zwar handelt es sich bei der Hydrocyanierung um einen sehr wichtigen industriellen Prozess“, so Bill Morandi. Immerhin stellt die chemische Industrie auf diese Weise jährlich etwa eine Million Tonnen Adiponitril her und verarbeitet dieses weiter zu Nylon. Diese Reaktion funktioniert bislang aber nur mit dem giftigen Cyanwasserstoff oder ähnlich toxischen cyanidhaltigen Stoffen.

Daher meiden sie offenbar viele Chemiker vor allem in der Forschung bei der Suche nach neuen Substanzen, die für die Medizin oder chemische Industrie nützlich sein könnten. Chemiker aus Bill Morandis Gruppe haben nun einen sicheren Weg gefunden, eine Cyanogruppe von einem organischen Molekül auf ein anderes zu übertragen. Genauer gesagt tauscht das Molekül die Cyanogruppe gegen eine Doppelbindung des anderen Moleküls. Doppelbindungen sind aus dem Supermarkt bekannt, weil sie ungesättigte Fettsäuren gesünder machen als gesättigte.

„Überraschend, dass die alternative Hydrocyanierung erst jetzt entdeckt wird.“

Möglich wird der Tausch der chemischen Funktionsträger erst, weil die Max-Planck-Forscher einen geeigneten Katalysator dafür gefunden haben. Katalysatoren beschleunigen chemische Reaktionen und machen viele Umwandlungen wie auch die in Mülheim vermittelte chemische Tauschaktion erst möglich. Wie Morandis Team in Reaktionen mit vielen Ausgangsmolekülen gezeigt haben, platziert der neue Katalysator die Cyanogruppe dabei in genau vorhersagbarer Weise. Das ist beim Einbau funktioneller Gruppen nicht selbstverständlich, aber wichtig, um zu der gewünschten Substanz zu gelangen. In einigen Fällen, die Morandis Team untersucht hat, landet das chemische Anhängsel dabei sogar an Positionen, an die es sich vorher gar nicht bringen ließ.

„Es ist überraschend, dass diese alternative Hydrocyanierung bislang noch nicht entdeckt wurden“, sagt Bill Morandi. Denn der Katalysator ähnele dem Reaktionsbeschleuniger, der auch jetzt schon für die Hydrocyanierung eingesetzt wird. So ist es das Verdienst von Bill Morandi und seinen Mitarbeitern, im Werkzeugkasten der Chemie einen harmlosen Ersatz für ein wichtiges, aber gefährliches Instrument entwickelt zu haben.

Ein chemisches Werkzeug, dessen Wirkung sich umkehren lässt

Die neue Reaktion zeichnet sich jedoch nicht nur dadurch aus, dass sie sicherer ist als die bislang praktizierte Hydrocyanierung. „Sie lässt sich auch sehr leicht umkehren“, sagt Morandi. Der neue Hammer im chemischen Werkzeugkasten macht also nicht nur keine blauen Daumen mehr, er taugt gleichzeitig auch als Zange. Das könnte gerade in der Forschung interessant sein, um gezielt Doppelbindungen an Stellen in einem Molekül zu schaffen, an denen sie sich auf andere Weise nicht erzeugen lassen. Auch das belegten die Forscher mit vielen unterschiedlichen Tauschaktionen. Sie erzeugten sogar gezielt eine Doppelbindung in einem Estrogen. Dass das Werkzeug zuverlässig solche speziellen und anspruchsvollen Aufgaben erledigt, dürfte nicht nur die Forschung, sondern auch die Industrie interessieren.

„Bislang ist die neue Form der Hydrocyanierung wahrscheinlich noch zu teuer, um den alten industriellen Prozess zu ersetzen“, sagt Bill Morandi. Das Team testet aber bereits eine kostengünstigere Variante. Außerdem wollen die Forscher auch mit anderen funktionellen Gruppen Tauschgeschäfte machen. Chemiker sprechen bei diesem Reaktionsprinzip von Metathese, für deren Entdeckung es 2005 den Chemie-Nobelpreis gab. Vielleicht können die Mülheimer Forscher so künftig noch mehr zuverlässige, vielseitige und vor allem sichere Werkzeuge für die Chemie entwickeln.


Ansprechpartner

Dr. Bill Morandi
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Telefon: +49 208 306-2340

E-Mail: morandi@kofo.mpg.de


Originalpublikation
Xianjie Fang, Peng Yu, Bill Morandi

Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation

DOI: 10.1126/science.aae0427

Quelle

Dr. Bill Morandi | Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Weitere Informationen:
https://www.mpg.de/10309105/hydrocianierung-chemie-cyano

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics