Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie: Eine Hammer-Tauschaktion!

24.02.2016

Eine sichere Variante der Hydrocyanierung verhilft Chemikern zu einem vielseitigen Werkzeug mit umkehrbarer Funktion

Chemie ist wie ein Werkzeugkasten. Um etwa medizinische Wirkstoffe, Kunststoffe oder Farben herzustellen, greifen Chemiker zu diversen Reagenzien und Methoden wie Handwerker zu ihren Utensilien. Wissenschaftler des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr präsentieren nun ein neues chemisches Werkzeug, das einen wichtigen Syntheseschritt, nämlich die Hydrocyanierung, ermöglicht und ungefährlicher ist als die dafür bislang gängige Methode. Das ist in etwa so, als würde ein Hammer erfunden, mit dem man sich nicht auf die Finger klopfen kann.


Ein molekularer Tausch: Chemiker des Max-Planck-Instituts für Kohlenforschung haben einen sicheren Weg gefunden Cyanid-Gruppe (CN) eine funktionelle Gruppe, die viele Möglichkeiten für die Weiterverarbeitung einer Substanz schafft, von einem Molekül (R‘-) auf ein anderes (R-) zu übertragen. Dabei übernimmt das Spender-Molekül eine Doppelbindung(=) seines Reaktionspartners.

© iStock/skvoor/MPG

Die Forscher haben zwischen Molekülen zwei funktionelle Gruppen, genauer gesagt eine Cyanogruppe und eine Doppelbindung, ausgetauscht. Funktionelle Gruppen sind wie Haken oder Ösen für Moleküle. Ein Molekül mit einer Cyanogruppe zu versehen, schafft vielfältige Möglichkeiten, es weiter zu verändern, und ist ein wichtiger Schritt etwa bei der Herstellung von Nylon. Bislang ist dies aber nur mit dem giftigen Cyanwasserstoff, besser bekannt als Blausäure, möglich.

Manchmal mögen auch Chemiker die Chemie nicht. „Wir haben uns gewundert, warum die Hydrocyanierung vor allem in Forschungslabors so selten eingesetzt wird“, sagt Bill Morandi, Leiter einer Forschungsgruppe am Max-Planck-Institut für Kohlenforschung. Bei dieser Reaktion heften Chemiker eine Cyanogruppe an ein Molekül. Damit fügen sie dem Kohlenstoff-Gerüst eines organischen Moleküls nicht nur ein weiteres Atom hinzu. Eine Cyanogruppe lässt sich auch in andere funktionelle Gruppen umwandeln, die entweder für weitere Reaktionsschritte gebraucht werden oder die Eigenschaften des Endproduktes wie etwa eines medizinischen Wirkstoffs entscheidend prägen.

„Zwar handelt es sich bei der Hydrocyanierung um einen sehr wichtigen industriellen Prozess“, so Bill Morandi. Immerhin stellt die chemische Industrie auf diese Weise jährlich etwa eine Million Tonnen Adiponitril her und verarbeitet dieses weiter zu Nylon. Diese Reaktion funktioniert bislang aber nur mit dem giftigen Cyanwasserstoff oder ähnlich toxischen cyanidhaltigen Stoffen.

Daher meiden sie offenbar viele Chemiker vor allem in der Forschung bei der Suche nach neuen Substanzen, die für die Medizin oder chemische Industrie nützlich sein könnten. Chemiker aus Bill Morandis Gruppe haben nun einen sicheren Weg gefunden, eine Cyanogruppe von einem organischen Molekül auf ein anderes zu übertragen. Genauer gesagt tauscht das Molekül die Cyanogruppe gegen eine Doppelbindung des anderen Moleküls. Doppelbindungen sind aus dem Supermarkt bekannt, weil sie ungesättigte Fettsäuren gesünder machen als gesättigte.

„Überraschend, dass die alternative Hydrocyanierung erst jetzt entdeckt wird.“

Möglich wird der Tausch der chemischen Funktionsträger erst, weil die Max-Planck-Forscher einen geeigneten Katalysator dafür gefunden haben. Katalysatoren beschleunigen chemische Reaktionen und machen viele Umwandlungen wie auch die in Mülheim vermittelte chemische Tauschaktion erst möglich. Wie Morandis Team in Reaktionen mit vielen Ausgangsmolekülen gezeigt haben, platziert der neue Katalysator die Cyanogruppe dabei in genau vorhersagbarer Weise. Das ist beim Einbau funktioneller Gruppen nicht selbstverständlich, aber wichtig, um zu der gewünschten Substanz zu gelangen. In einigen Fällen, die Morandis Team untersucht hat, landet das chemische Anhängsel dabei sogar an Positionen, an die es sich vorher gar nicht bringen ließ.

„Es ist überraschend, dass diese alternative Hydrocyanierung bislang noch nicht entdeckt wurden“, sagt Bill Morandi. Denn der Katalysator ähnele dem Reaktionsbeschleuniger, der auch jetzt schon für die Hydrocyanierung eingesetzt wird. So ist es das Verdienst von Bill Morandi und seinen Mitarbeitern, im Werkzeugkasten der Chemie einen harmlosen Ersatz für ein wichtiges, aber gefährliches Instrument entwickelt zu haben.

Ein chemisches Werkzeug, dessen Wirkung sich umkehren lässt

Die neue Reaktion zeichnet sich jedoch nicht nur dadurch aus, dass sie sicherer ist als die bislang praktizierte Hydrocyanierung. „Sie lässt sich auch sehr leicht umkehren“, sagt Morandi. Der neue Hammer im chemischen Werkzeugkasten macht also nicht nur keine blauen Daumen mehr, er taugt gleichzeitig auch als Zange. Das könnte gerade in der Forschung interessant sein, um gezielt Doppelbindungen an Stellen in einem Molekül zu schaffen, an denen sie sich auf andere Weise nicht erzeugen lassen. Auch das belegten die Forscher mit vielen unterschiedlichen Tauschaktionen. Sie erzeugten sogar gezielt eine Doppelbindung in einem Estrogen. Dass das Werkzeug zuverlässig solche speziellen und anspruchsvollen Aufgaben erledigt, dürfte nicht nur die Forschung, sondern auch die Industrie interessieren.

„Bislang ist die neue Form der Hydrocyanierung wahrscheinlich noch zu teuer, um den alten industriellen Prozess zu ersetzen“, sagt Bill Morandi. Das Team testet aber bereits eine kostengünstigere Variante. Außerdem wollen die Forscher auch mit anderen funktionellen Gruppen Tauschgeschäfte machen. Chemiker sprechen bei diesem Reaktionsprinzip von Metathese, für deren Entdeckung es 2005 den Chemie-Nobelpreis gab. Vielleicht können die Mülheimer Forscher so künftig noch mehr zuverlässige, vielseitige und vor allem sichere Werkzeuge für die Chemie entwickeln.


Ansprechpartner

Dr. Bill Morandi
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Telefon: +49 208 306-2340

E-Mail: morandi@kofo.mpg.de


Originalpublikation
Xianjie Fang, Peng Yu, Bill Morandi

Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation

DOI: 10.1126/science.aae0427

Quelle

Dr. Bill Morandi | Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Weitere Informationen:
https://www.mpg.de/10309105/hydrocianierung-chemie-cyano

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten