Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie, die auf der Zunge liegt: 31 aktive Geschmacksstoffe in Parmesan

24.03.2016

Was wäre italienische Pasta ohne Parmesan? Kein anderer Käse verleiht Gerichten einen vergleichbaren Geschmack. Aber warum? Dieser Frage sind Chemiker der Technischen Universität München (TUM) nachgegangen. Die Forscher fanden 31 aktive Geschmacksstoffe, die zusammen eine chemo-sensorische Signatur ergeben. Mit deren Hilfe können Produzenten künftig die Qualität des Käses während der Herstellung überprüfen und verbessern.

Jahrhundertealte Rezepte verleihen dem weltberühmten Hartkäse aus der Region Emilia Romana seine besondere Note. Parmesan, italienisch Parmigiano, wird traditionell aus Rohmilch gefertigt. Er benötigt bis zu drei Jahre Reifezeit, um seinen typischen Geschmack zu entwickeln: Herzhaft und salzig, ein wenig scharf, gleichzeitig ist er sauer mit einer bitter-süßen Komponente.


Welche Geschmacks- und Aromastoffe stecken in Parmesan? Dem sind TUM-Wissenschaftler nun nachgegangen.

(Foto: TUM/ A. Battenberg)

Wie kommt der sensorische Gesamteindruck von Parmesan zustande?

Welche Geschmacks- und Aromastoffe sind dafür verantwortlich? Wie beeinflussen sie unsere Sinne? Diese Fragen sind nicht nur für Gourmets interessant, sondern genauso für Hersteller, die die Qualität ihrer Produkte überprüfen und verbessern möchten. Wissenschaftliche Untersuchungsmethoden können jetzt dabei helfen.

Käse ist schon seit einigen Jahren ein Objekt der Forschung. Studien haben gezeigt, dass verschiedene Moleküle den Geschmack bestimmen. Ihre Zusammensetzung und Konzentration ist für die unterschiedlichen Käsesorten typisch. Entscheidend beim Gauda-Geschmack sind beispielsweise γ-L-Glutamyl-Peptide, die bei der Käsereifung enzymatisch aus Aminosäuren aufgebaut werden.

Doch welche Stoffe verleihen dem Parmesan seinen unverwechselbaren Geschmack? „Es gab bisher keine systematischen molekularen Untersuchungen“, erklärt Professor Thomas Hofmann, Ordinarius des Lehrstuhls für Lebensmittelchemie und Molekulare Sensorik an die TUM.

31 verschiedene Armomastoffe im Parmesan

Zusammen mit Dr. Hedda Hillmann hat Hofmann Parmesankäse einer gründlichen chemischen Analyse unterzogen: Die Forscher zerlegten den Käse in seine Bestandteile, trennten Fette sowie Proteine ab und konzentrierten die Aromastoffe in wässriger Lösung. Diese wurden dann mit einem Hochleistungsmassenspektrometer untersucht.

31 verschiedene Armomastoffe konnte das TUM-Team auf diese Weise identifizieren - darunter Mineralien, Fettsäuren, organische Säuren, biogene Amine und Aminosäuren. Auch Peptide in hohen Konzentrationen, darunter γ-L-Glutamyl-Peptide, wurden detektiert.

Mensch und Maschine ergänzen sich

Waren damit alle Geschmacksstoffe identifiziert? Um die Ergebnisse zu überprüfen, engagierten die Forscher eigens geschulte Testpersonen, die sowohl den Parmesan, als auch die wässrige Käse-Lösung probierten und die gustatorischen Sinneseindrücke bewerteten – beispielsweise die Kategorien süß, salzig, sauer und bitter.

Ergebnis: Der Geschmack des wässrigen Extrakts stimmte sehr gut mit dem des echten Käses überein. Damit war bewiesen, dass die massenspektroskopische Analyse tatsächlich die typische Verteilung der Aromastoffe wiedergibt.

„Die Untersuchungen ergeben einen molekularen, chemo-sensorischen Fingerabdruck für Parmesan“, resümiert Hofmann. „Dieser kann nützlich sein, um die Veränderungen im Geschmacksprofil während der Käseherstellung objektiv zu messen und zu visualisieren. Dies eröffnet Herstellen die Möglichkeit, den Geschmack durch Veränderung der Prozessparameter zu verbessern.“

Publikation:
Hedda Hillmann and Thomas Hofmann: Quantitation of Key Tastants and Re-engineering the Taste of Parmesan Cheese, Journal of Agricultural and Food Chemisty, 2016, 64, 1794-1805. DOI: 10.1021/acs.jafc.6b00112

Kontakt:
Prof. Thomas Hofmann
Lehrstuhl für Lebensmittelchemie und molekulare Senorik
Lise-Meitner-Straße 34
85354 Freising
thomas.hofmann@tum.de
Telefon +49 (89) 289 - 22201
Telefon 2: +49 (8161) 71-2902

Weitere Informationen:

http://go.tum.de/370501

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik