Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie, die auf der Zunge liegt: 31 aktive Geschmacksstoffe in Parmesan

24.03.2016

Was wäre italienische Pasta ohne Parmesan? Kein anderer Käse verleiht Gerichten einen vergleichbaren Geschmack. Aber warum? Dieser Frage sind Chemiker der Technischen Universität München (TUM) nachgegangen. Die Forscher fanden 31 aktive Geschmacksstoffe, die zusammen eine chemo-sensorische Signatur ergeben. Mit deren Hilfe können Produzenten künftig die Qualität des Käses während der Herstellung überprüfen und verbessern.

Jahrhundertealte Rezepte verleihen dem weltberühmten Hartkäse aus der Region Emilia Romana seine besondere Note. Parmesan, italienisch Parmigiano, wird traditionell aus Rohmilch gefertigt. Er benötigt bis zu drei Jahre Reifezeit, um seinen typischen Geschmack zu entwickeln: Herzhaft und salzig, ein wenig scharf, gleichzeitig ist er sauer mit einer bitter-süßen Komponente.


Welche Geschmacks- und Aromastoffe stecken in Parmesan? Dem sind TUM-Wissenschaftler nun nachgegangen.

(Foto: TUM/ A. Battenberg)

Wie kommt der sensorische Gesamteindruck von Parmesan zustande?

Welche Geschmacks- und Aromastoffe sind dafür verantwortlich? Wie beeinflussen sie unsere Sinne? Diese Fragen sind nicht nur für Gourmets interessant, sondern genauso für Hersteller, die die Qualität ihrer Produkte überprüfen und verbessern möchten. Wissenschaftliche Untersuchungsmethoden können jetzt dabei helfen.

Käse ist schon seit einigen Jahren ein Objekt der Forschung. Studien haben gezeigt, dass verschiedene Moleküle den Geschmack bestimmen. Ihre Zusammensetzung und Konzentration ist für die unterschiedlichen Käsesorten typisch. Entscheidend beim Gauda-Geschmack sind beispielsweise γ-L-Glutamyl-Peptide, die bei der Käsereifung enzymatisch aus Aminosäuren aufgebaut werden.

Doch welche Stoffe verleihen dem Parmesan seinen unverwechselbaren Geschmack? „Es gab bisher keine systematischen molekularen Untersuchungen“, erklärt Professor Thomas Hofmann, Ordinarius des Lehrstuhls für Lebensmittelchemie und Molekulare Sensorik an die TUM.

31 verschiedene Armomastoffe im Parmesan

Zusammen mit Dr. Hedda Hillmann hat Hofmann Parmesankäse einer gründlichen chemischen Analyse unterzogen: Die Forscher zerlegten den Käse in seine Bestandteile, trennten Fette sowie Proteine ab und konzentrierten die Aromastoffe in wässriger Lösung. Diese wurden dann mit einem Hochleistungsmassenspektrometer untersucht.

31 verschiedene Armomastoffe konnte das TUM-Team auf diese Weise identifizieren - darunter Mineralien, Fettsäuren, organische Säuren, biogene Amine und Aminosäuren. Auch Peptide in hohen Konzentrationen, darunter γ-L-Glutamyl-Peptide, wurden detektiert.

Mensch und Maschine ergänzen sich

Waren damit alle Geschmacksstoffe identifiziert? Um die Ergebnisse zu überprüfen, engagierten die Forscher eigens geschulte Testpersonen, die sowohl den Parmesan, als auch die wässrige Käse-Lösung probierten und die gustatorischen Sinneseindrücke bewerteten – beispielsweise die Kategorien süß, salzig, sauer und bitter.

Ergebnis: Der Geschmack des wässrigen Extrakts stimmte sehr gut mit dem des echten Käses überein. Damit war bewiesen, dass die massenspektroskopische Analyse tatsächlich die typische Verteilung der Aromastoffe wiedergibt.

„Die Untersuchungen ergeben einen molekularen, chemo-sensorischen Fingerabdruck für Parmesan“, resümiert Hofmann. „Dieser kann nützlich sein, um die Veränderungen im Geschmacksprofil während der Käseherstellung objektiv zu messen und zu visualisieren. Dies eröffnet Herstellen die Möglichkeit, den Geschmack durch Veränderung der Prozessparameter zu verbessern.“

Publikation:
Hedda Hillmann and Thomas Hofmann: Quantitation of Key Tastants and Re-engineering the Taste of Parmesan Cheese, Journal of Agricultural and Food Chemisty, 2016, 64, 1794-1805. DOI: 10.1021/acs.jafc.6b00112

Kontakt:
Prof. Thomas Hofmann
Lehrstuhl für Lebensmittelchemie und molekulare Senorik
Lise-Meitner-Straße 34
85354 Freising
thomas.hofmann@tum.de
Telefon +49 (89) 289 - 22201
Telefon 2: +49 (8161) 71-2902

Weitere Informationen:

http://go.tum.de/370501

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops