Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cellulose: Schwer verdaulich, aber energiereich

14.07.2010
Getreide, Gemüse und Obst sind wichtige Energielieferanten der menschlichen Ernährung. Den Hauptbestandteil von Pflanzen - die Cellulose in der Zellwand - können wir allerdings gar nicht verwerten.

Selbst bei Wiederkäuern, die Cellulose verdauen können, spielt die Verdaulichkeit der Zellwand eine entscheidende Rolle für die Futterverwertung.

Wissenschaftler arbeiten deshalb daran, pflanzliche Zellwände zur Energiegewinnung zu nutzen und die Verdaulichkeit von Futter zu erhöhen. Wissenschaftler am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam-Golm haben nun ein bislang unbekanntes Protein entdeckt, das zur Cellulose-Produktion benötigt wird.

Pflanzliche Zellen besitzen im Unterschied zu Zellen von Tieren eine Zellwand aus verschiedenen Zuckerpolymeren, deren Hauptbestandteil Cellulose ist. Sie gibt der Pflanze ihre Stabilität, schützt sie vor Krankheitserregern und ist an der Samenkeimung und der Fruchtreife beteiligt. Pflanzen bestehen zu 35 bis 50% ihres Trockengewichts aus Cellulose – es ist damit das häufigste Biopolymer der Erde.

Cellulose wird durch einen Protein-Komplex direkt an der Plasmamembran synthetisiert. Die einzige bisher bekannte Komponente dieses Komplexes ist die Cellulose-Synthase (CESA). Dieses Enzym kommt in Pflanzenzellen in verschiedenen Formen mit jeweils unterschiedlichem Aufbau vor. Genetische Studien weisen darauf hin, dass drei dieser Formen – CESA1, CESA3 und CESA6 – für die Synthese der primären Zellwand benötigt werden, während CESA4, CESA7 und CESA8 für die Synthese der sekundären Zellwand erforderlich sind. Die primäre Zellwand bildet sich während des Zellwachstums und ist besonders flexibel und dehnbar. Die sekundäre Zellwand entsteht dagegen nach Abschluss des Wachstums und ist dicker und starrer ist als die primäre Zellwand.

Bislang war unbekannt, aus wie vielen CESA-Formen der Proteinkomplex besteht und ob noch weitere Proteine darin enthalten sind. Wissenschaftler um Staffan Persson am Max-Planck-Institut für Molekulare Pflanzenphysiologie haben in Zusammenarbeit mit Kollegen aus den USA das Cellulose Synthase-Interactive Protein – CSI1 – identifiziert, das an der Cellulose-Synthese beteiligt ist. CSI1 scheint mit dem CESA-Komplex verbunden zu sein, denn es interagiert mit den Cellulose-Synthasen der primären Zellwand (CESA1, 3 und 6). Die Forscher konnten zeigen, dass das Protein eine wichtige Rolle bei der Bildung von Cellulose spielt. „Pflanzen, die aufgrund einer Mutation kein CSI1 bilden können, produzieren nachweislich weniger Cellulose. Sie haben verkürzte und geschwollene Wurzeln und ihre Pollenkörner fallen in sich zusammen“, erklärt Staffan Persson.

Welche Funktion CSI1 bei der Cellulose-Synthese hat, wissen die Wissenschaftler allerdings noch nicht. Sie vermuten, dass das Protein die Geschwindigkeit der Cellulose-Produktion und die räumliche Ausrichtung der einzelnen Cellulose-Fibrillen beeinflusst. Deshalb wollen die Forscher als nächstes die genaue Rolle von CSI1 untersuchen. Die Erkenntnisse aus diesen weiterführenden Untersuchungen werden zu einem verbesserten Verständnis der Biosynthese von Zellwänden beitragen. Dieses Wissen könnte die Chancen auf eine bessere Zellwandverdaulichkeit in der Tierfütterung oder die Nutzung von Zellwänden zur Energiegewinnung erhöhen.

Originalveröffentlichung:
Ying Gu, Nick Kaplinsky, Martin Bringmann, Alex Cobb, Andrew Carroll, Arun Sampathkumar, Tobias I. Baskin, Staffan Persson und Chris R. Somerville
Identification of a cellulose synthase-associated protein required for cellulose biosynthesis

PNAS, 1. Juli 2010, online vorab veröffentlicht (doi: 10.1073/pnas.1007092107)

Kontakt:
Dr. Staffan Persson
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel.: +49 331 567-8149
E-mail: persson@mpimp-golm.mpg.de
Ursula Ross-Stitt, Pressereferentin
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel.: +49 331 567-8310
E-mail: Ross-Stitt@mpimp-golm.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimp-golm.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten